2

I'm looking for the limit of this sum: $\frac{1}{\left\lceil\frac{n}{2}\right\rceil+1}+\frac{1}{\left\lceil\frac{n}{2}\right\rceil+2}+\frac{1}{\left\lceil\frac{n}{2}\right\rceil+3}+\cdots+\frac{1}{n}$ when $n \rightarrow +\infty$. I guess the limit exists. But I don't know how to find it out. It seems that the formula $-\ln(1-x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots+\frac{x^n}{n}+\cdots$ doesn't help. May I have some help?

Connor
  • 2,395

1 Answers1

1

Your partial sum is $H_n-H_{\left\lceil\frac{n}{2}\right\rceil}$, where $H_n$ is the $n^{\rm{th}}$ harmonic number Since $H_n \approx \log n + \gamma,$ this will approach $\log n - \log {\left\lceil\frac{n}{2}\right\rceil}=\log 2$

Ross Millikan
  • 383,099