0

If i define $f(m,n)=$ $$\sum_{1\leq k\leq mn}\left\{ \frac{k}{m}\right\} \left\{ \frac{k}{n}\right\} .$$

Then prove $$f(m+n,n) - f(m,n) =\frac{n^2-n}{4}$$ for all $m$ and $n$.

This question came from part of answer from this question: A sum of fractional parts.

Victor
  • 8,498

1 Answers1

3

Since $k$ goes from $1$ to $mn$, then the pairs $((k \bmod m),(k \bmod n))$ will meet all cases once.

thus the product is

$$\sum_{1\le k\le m}\left\{\frac{k}{m}\right\}\sum_{1\le t\le n}\left\{\frac{t}{n}\right\}=\frac{m-1}{2}\frac{n-1}{2}\;.$$

Done.

Brian M. Scott
  • 631,399
Yimin
  • 3,697
  • 21
  • 34