A negative binomial distribution is given by $$P(X=x) = \binom{x-1}{k-1}p^{k}(1-p)^{(x-k)},$$ where $p$ is probability of a success and $x \in \{k , k+1 , k+2 , \ldots\}$.
Its mean is given by $$ E(X) = \sum_{x=k}^{\infty} \binom{x-1}{k-1}p^{k}(1-p)^{(x-k)} \cdot x $$ So what I tried $$ \sum_{x=k}^{\infty} \binom{x-1}{k-1}p^{k}(1-p)^{(x-k)}\cdot x = \sum_{x=k}^{\infty} \binom{x}{k}p^{k}(1-p)^{(x-k)} \cdot k, $$ as $\binom{x-1}{k-1} \cdot x$ = $\binom{x}{k} \cdot k$
Now, $$ \sum_{x=k}^{\infty} \binom{x}{k}p^{k}(1-p)^{(x-k)} \cdot k = k \sum_{x=k}^{\infty} \binom{x}{k}\frac{p^{k+1}}{p}(1-p)^{(x-k)} = \frac{k}{p} \sum_{x=k}^{\infty} \binom{x}{k}p^{k+1}(1-p)^{(x-k)}. $$ So, $$ \sum_{x=k}^{\infty} \binom{x}{k}p^{k+1}(1-p)^{(x-k)}=1 $$ (Sum of all probabilities). This implies $$ \frac{k}{p}\sum_{x=k}^{\infty} \binom{x}{k}p^{k+1}(1-p)^{(x-k)} =\frac{k}{p}. $$ Thus, Mean = $\frac{k}{p}$ But this isn't the correct answer, could anyone tell what am I doing wrong ?