The following link: http://mathworld.wolfram.com/MoebiusStrip.html shows the Möbius strip parametrized as \begin{eqnarray} x = [ R + s \cos \left ( \frac{1}{2} t \right ) ] \cos t \\ y = [ R + s \cos \left ( \frac{1}{2} t \right ) ] \sin t \\ z = s \sin \left ( \frac12 t \right ) \end{eqnarray} The symbols for $R$ and $s$ and angle $t$ are explained there.
Then they say that from this parametrization we can derive the cubic.
\begin{equation} -R^2 y + x^2 y + y^3 - 2 R x z - 2 x^2 z + y z^2 = 0. \end{equation}
Any ideas about how to do this? I have tried with no success.
Thanks.
This is what I have done so far:
Square the first two equations above and add to find \begin{equation} x^2 + y^2 = \left ( R + s \left ( \cos \frac{t}{2} \right ) \right )^2 \end{equation} Take the square root of this \begin{equation} \sqrt{x^2 + y^2 }= R + s \left ( \cos \frac{t}{2} \right ) \Longrightarrow \sqrt{x^2 + y^2 } - R = s \left ( \cos \frac{t}{2} \right ) \end{equation} Square this and the third equation (for $z$) and add to find \begin{equation} s^2 = \left ( \sqrt{x^2+y^2}- R \right )^2 + z^2 \end{equation}
Now, let us divide the second by the first equation
That is \begin{equation} \frac{y}{x} = \tan t = \frac{2 \tan (t/2)}{1 - \tan^2 (t/2)} \end{equation} multiply numerator and denominator by $\cos^2 (t/2)$ \begin{equation} \frac{y}{x} = \frac{2 \sin(t/2) (\sqrt{1-\sin^2(t/2)} }{\cos^2 (t/2) - \sin^2(t/2)} = \frac{2 \sin(t/2) \sqrt{1 - \sin^2(t/2)}}{1 - 2 \sin^2(t/2)}. \end{equation} Multiply numerator and denominator by $s^2$, then \begin{equation} \frac{y}{x} = \frac{2 z \sqrt{s^2 - z^2}}{s^2 - 2 z^2} \end{equation}
That is \begin{equation} \frac{y}{x} = \frac{2 z (\sqrt{x^2 + y^2} - R)}{ ( \sqrt{x^2 + y^2} - R)^2 - z^2} \end{equation} or \begin{equation} \frac{y}{x} = \frac{2 z (\sqrt{x^2 + y^2} - R)}{ (x^2 + y^2) + R^2 - 2 R \sqrt{x^2+y^2} - z^2} \end{equation}
Or \begin{equation} y (x^2 + y^2) + y R^2 - 2 R y \sqrt{x^2+y^2} - z^2 y = 2 z x \sqrt{x^2 + y^2} -2 R x z \end{equation}