I am trying to find the Galois group of $x^{4}+7$ over $\mathbb{Q}$ and all of the intermediate extensions between $\mathbb{Q}$ and the splitting field of this polynomial. I have found that the splitting field is $\mathbb{Q}(i, \sqrt[4]{7}\sqrt{2})=\mathbb{Q}(i,\sqrt[4]{28})$.
Edit: (Justifying the splitting field stated above)
The roots of the polynomial are $\sqrt[4]{7}\big(\pm \frac{\sqrt{2}}{2}\pm i\frac{\sqrt{2}}{2}\big)$ so the spliting field is $E=\mathbb{Q}\bigg(\sqrt[4]{7}\big(\pm \frac{\sqrt{2}}{2}\pm i\frac{\sqrt{2}}{2}\big) \bigg)=\mathbb{Q}\bigg(\sqrt[4]{7}(\pm\sqrt{2}\pm i\sqrt{2} ) \bigg)$.
We have $\sqrt[4]{7}(\sqrt{2}+i\sqrt{2}) \in E$ and $(\sqrt[4]{7}(\sqrt{2}-i\sqrt{2}) \in E$, hence their sum $=2\sqrt[4]{7}\sqrt{2} \in E \implies \sqrt[4]{7}\sqrt{2} \in E$. Then we also have $\sqrt[4]{7}\sqrt{2}+i\sqrt[4]{7}\sqrt{2}-\sqrt[4]{7}\sqrt{2} = i\sqrt[4]{7}\sqrt{2} \in E \implies \frac{i\sqrt[4]{7}\sqrt{2}}{\sqrt[4]{7}\sqrt{2}}=i \in E$. So $\mathbb{Q}(i,\sqrt{4}\sqrt{7}) \subseteq E$. But all of the roots of $x^{4}+7$ are contained in $\mathbb{Q}(i,\sqrt[4]{7}\sqrt{2})$ so we in fact have $E=\mathbb{Q}(i,\sqrt[4]{7}\sqrt{2})=\mathbb{Q}(i,\sqrt[4]{28})$.
I'm pretty confident this is correct and I have determined the Galois group is the automorphisms of the form $ \sigma: \bigg\{ \begin{array}{ll} i \mapsto \pm i\\ \sqrt[4]{28} \mapsto \pm i^{k}\sqrt[4]{28}& k \in \{0,1\} \end{array} $
which will be isomorphic to $D_{8}$, so there should be 10 intermediate subfields.
Edit 2: I think I found a systematic way to find the ten intermediate subfields.
Still trying to figure out what the last three intermediate fields are in terms of my generators.
$\mathbb{Q}(i,\sqrt[4]{28})\\ \mathbb{Q}(i,\sqrt{28})\\ \mathbb{Q}(i)\\ \mathbb{Q}(\sqrt[4]{28})\\ \mathbb{Q}(i\sqrt[4]{28})\\ \mathbb{Q}(i\sqrt{28})\\ \mathbb{Q}\\ $
Why such concern?
– Tuo Jul 09 '15 at 01:13