0

I know from my calculator the answer is $\sum_{i = 1}^n k^n$ = $\frac{k^{n+1}-k}{k - 1}$. I'd just like help understanding why.

Bondolin
  • 103

1 Answers1

2

Because $$(1-k)(1+k^2+k^3+\dots+k^n)=(1+k^2+k^3+\dots+k^n)-(k+k^2+k^3+\dots+k^{n+1})=1-k^{n+1}$$

FrodCube
  • 503
  • 2
  • 9