By using the density of the standard normal variable we have:
$$\begin{eqnarray*}\mathbb{P}[X>t]&=&\frac{1}{\sqrt{2\pi}}\int_{t}^{+\infty}e^{-x^2/2}\,dx=\frac{e^{-t^2/2}}{\sqrt{2\pi}}\int_{0}^{+\infty}e^{-xt-x^2/2}\,dx\\&\leq&\frac{e^{-t^2/2}}{\sqrt{2\pi}}\int_{0}^{+\infty}e^{-xt}\,dx=\color{red}{\frac{e^{-t^2/2}}{t\sqrt{2\pi}}},\end{eqnarray*}$$
hence a stronger inequality is true for sure for any $t>\sqrt{\frac{2}{\pi}}$. If $t\leq\sqrt{\frac{2}{\pi}}$, we just need to exploit:
$$ \frac{e^{-t^2/2}}{\sqrt{2\pi}}\int_{0}^{+\infty}e^{-xt-x^2/2}\,dx\leq \frac{e^{-t^2/2}}{\sqrt{2\pi}}\int_{0}^{+\infty}e^{-x^2/2}\,dx = \color{red}{\frac{e^{-t^2/2}}{2}} $$
hence we have:
$$ \forall t>0,\qquad \mathbb{P}[X>t]\leq \frac{e^{-t^2/2}}{\max(2,t\sqrt{2\pi})}.$$
That can also be improved up to:
$$ \forall t>0,\qquad \mathbb{P}[X>t]\leq \frac{e^{-t^2/2}}{\sqrt{4+2\pi t^2}}.$$
Have a look at the Wikipedia page about the Mills Ratio and its continued fraction representation.