Find $3 \times 3$ orthogonal matrix Q such that: $$Q \left[\begin{array}{r} 3\\ 0 \\ 4\end{array}\right] = \left[\begin{array}{r} 5\\ 0 \\ 0\end{array}\right]$$
How can I find matrix Q if I only know the info like above. Thank you for your help.
Find $3 \times 3$ orthogonal matrix Q such that: $$Q \left[\begin{array}{r} 3\\ 0 \\ 4\end{array}\right] = \left[\begin{array}{r} 5\\ 0 \\ 0\end{array}\right]$$
How can I find matrix Q if I only know the info like above. Thank you for your help.
Since your second term of vector does not change. $A$ is in form of
$\begin{pmatrix}\cos\theta &0& \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta\end{pmatrix}$
then just find out $\theta$.
$\cos \theta = 0.6$ and $\sin\theta = 0.8$
Another answer: $$Q=I-\frac2{\bf d\cdot d}{\bf d}{\bf d}^T\quad\hbox{where}\quad {\bf d}=\pmatrix{3\cr0\cr4\cr}-\pmatrix{5\cr0\cr0\cr}\ .$$