How to derive the following asymptotic expression ($|\omega| \ll D $)?
$$P.V.\int_{- D}^{D} d\xi \frac{\tanh(\beta \xi)}{\xi -\omega} \approx 2 \ln\left(\frac{D}{\sqrt{\omega^2+T^2}}\right),\ \ \ \beta =1/T,\ \ \omega, T \rightarrow 0.$$
Two limiting cases:
1) $\omega=0, \lim_{T\rightarrow 0}\int_{- D}^{D} d\xi \frac{\text{tanh}(\beta \xi)}{\xi} \approx 2 \ln\left(\frac{D}{T}\right) + C \approx 2 \ln\left(\frac{D}{T}\right)$;
2) $T=0, \lim_{\omega \rightarrow 0} \int_{- D}^{D} d\xi \frac{\theta(\xi)-\theta( -\xi)}{\xi -\omega} \approx 2 \ln\left(\frac{D}{\omega}\right).$
Some write $2 \ln\left(\frac{D}{\text{max}(\omega, T)}\right)$ instead of $ 2 \ln\left(\frac{D}{\sqrt{\omega^2+T^2}}\right).$
Can anyone elaborate Jack's answer? Thank you.
Actually, this is an important expression from physics, which is directly related to the Kondo problem, the divergence at the third order of perturbation theory.