Using Weinstein-Aronszajn,
$$ \det \left( \, {\bf A}_n \right) = \det \left( 2 \left( {\bf I}_n + {\bf 1}_n {\bf 1}_n^\top \right) \right) = 2^n \left( 1 + {\bf 1}_n^\top {\bf 1}_n \right) = 2^n (1 + n) = (1 + n) \, 2^n $$
Modulo $7$, note that $ 2^0 \equiv 2^3 \equiv 1 \pmod7 $ and that, for all $n \in {\Bbb N}$, $ 2^n \equiv 2^{n \bmod 3} \pmod 7$. Thus,
$$ \det \left( \, {\bf A}_n \right) = (1 + n) \, 2^n \equiv \color{blue}{\left( 1 + \left( n \bmod 7 \right) \right) \cdot 2^{n \bmod 3} \pmod 7} $$
Since the function $n \mapsto n \bmod 7$ is periodic with period $7$ and the function $n \mapsto 2^{n \bmod 3}$ is periodic with period $3$, the product of these functions should be periodic with period given by the least common multiple $\operatorname{lcm} (3,7) = 21$. Thus, only the first $21$ determinants are needed, i.e.,
$$ \det \left( \, {\bf A}_n \right) = \det \left( \, {\bf A}_{n \bmod 21} \right) $$
Verification
In Haskell,
ghci> ds = map (\n -> ((1 + n ) * 2^n ) `mod` 7) [1,2..]
ghci> es = map (\n -> ((1 + (n `mod` 7)) * 2^(n `mod` 3)) `mod` 7) [1,2..]
Do the first, say, $1000$ entries match?
ghci> take 1000 ds == take 1000 es
True
What about periodicity?
ghci> ds' = take 21 ds
ghci> fs = foldl (++) [] (replicate 50 ds')
ghci> take 1000 ds == take 1000 fs
True