By shifting and rescaling, assume without loss of generality that $[-1,1]\subseteq I$, and it suffices to show that $f$ is analytic at 0. By Taylor's theorem, we have
$$f(x) = \sum_{i=0}^k \frac{f^{(i)}(0)}{i!}x^k+R_k(x)$$
for all $x\in I$, where the remainder $R_k$ has the integral form
$$R_k(x) = \int_0^x \frac{f^{(k+1)}(t)}{k!}(x-t)^k\ dt$$
Since $f^{(k+1)}\geq 0$, it follows that $R_k(x)\geq0$ for all $x\in[0,1]$. Also, since $\sum_{i=0}^k \frac{f^{(i)}(0)}{i!}x^k \geq 0$ for all $x\in[0,1]$, we have $R_k(x)\leq f(x)$ for all $x\in[0,1]$. In particular, $R_k(1) \leq f(1)$ for all $k$. Now, using the fact that $\frac{x-t}{1-t} \leq x$ for $0\leq t\leq x\leq 1$, we have
\begin{align*}
R_k(x) &=
\int_0^x \frac{f^{(k+1)}(t)}{k!}(1-t)^k \frac{(x-t)^k}{(1-t)^k}\ dt\\
&\leq
\int_0^x \frac{f^{(k+1)}(t)}{k!}(1-t)^k x^k\ dt\\
&= x^k \int_0^x \frac{f^{(k+1)}(t)}{k!}(1-t)^k\ dt\\
&\leq x^k \int_0^1 \frac{f^{(k+1)}(t)}{k!}(1-t)^k\ dt \\
&= x^k R_k(1) \\
&\leq x^k f(1)
\end{align*}
Thus $\lim_{k\to\infty} R_k(x)=0$ for every $x\in[0,1)$. Similarly, $\lim_{k\to\infty} R_k(x)=0$ for $x\in(-1,0]$. Thus we obtain a power series expansion converging to $f(x)$ on the interval $(-1,1)$, as desired.