Consider the function
$$\mathcal I(a)=\int_{0}^{x}\frac{\mathrm dt}{t^2+a^2}=\frac1{a}\tan^{-1}\frac{x}{a}$$
Now, the expression for $\mathcal I’(a)$ can be obtained in $2$ different ways:
$1.$ Using $\mathcal I(a)=\int_{0}^{x}\frac{\mathrm dt}{t^2+a^2}$:
$$\begin{align}\mathcal I’(a)&=\frac{\mathrm d}{\mathrm da}\int_{0}^{x}\frac{\mathrm dt}{t^2+a^2}\\&=\int_0^x\frac{\partial}{\partial a}\left(\frac1{t^2+a^2}\right)\mathrm dt\tag{Leibniz integral rule}\\&=-2a\int_0^x\frac{\mathrm dt}{(t^2+a^2)^2}\end{align}$$
$2.$ Using $\mathcal I(a)=\frac1{a}\tan^{-1}\frac{x}{a}$:
$$\require{cancel}\begin{align}\mathcal I’(a)&=\frac{\partial}{\partial a}\left( \frac1{a}\tan^{-1}\frac{x}{a}\right)\\&=-\frac1{a^2}\tan^{-1}\frac{x}{a}-\frac{x}{a^\cancel3}\frac{\cancel{a^2}}{x^2+a^2}\end{align}$$
Hence,
$$\int_0^x\frac{\mathrm dt}{(t^2+a^2)^2}=\frac1{2a^3} \tan^{-1}\frac{x}{a}+\frac{x}{2a^2(x^2+a^2)}$$
Now, let $f(x)$ be a function such that $\frac1{(t^2+a^2)^2}=f’(t)$. Then, by the second part of the FTC:
$$f(x)-f(0)=\frac1{2a^3}\tan^{-1}\frac{x}{a}+\frac{x}{2a^2(x^2+a^2)}$$
As infinitely many functions $f(x)$ are possible, all of which differ by a constant,
$$\therefore\boxed{\int\frac{\mathrm dx}{(x^2+a^2)^2}=\frac1{2a^3} \tan^{-1}\frac{x}{a}+\frac{x}{2a^2(x^2+a^2)}+C}$$