1

This is just a note.

Given Hilbert spaces $\mathcal{H}$, $\mathcal{K}$.

Consider a closed operator: $$A:\mathcal{D}(A)\to\mathcal{K}:\quad A=A^{**}$$

Construct its modulus: $$|A|:=\sqrt{A^*A}:\quad|A|^*=|A|$$

Regard a decomposition: $$A=J|A|:\quad JJ^*J=J$$

Then for its kernel: $$\mathcal{N}J=(\mathcal{R}|A|)^\perp\implies\mathcal{N}J=(\mathcal{R}A^*)^\perp$$

How can i check this?

(The latter is better to work with.)

freishahiri
  • 17,045

1 Answers1

1

This answer is community wiki.

By square root lemma: $$\|A\varphi\|=\||A|\varphi\|\implies\mathcal{N}A=\mathcal{N}|A|$$

Exploit selfadjointness: $$\mathcal{N}J=(\mathcal{R}|A|)^\perp=\mathcal{N}|A|=\mathcal{N}A=(\mathcal{R}A^*)^\perp$$

Concluding the assertion.

freishahiri
  • 17,045