This is just a note.
Given Hilbert spaces $\mathcal{H}$, $\mathcal{K}$.
Consider a closed operator: $$A:\mathcal{D}(A)\to\mathcal{K}:\quad A=A^{**}$$
Construct its modulus: $$|A|:=\sqrt{A^*A}:\quad|A|^*=|A|$$
Regard a decomposition: $$A=J|A|:\quad JJ^*J=J$$
Then for its kernel: $$\mathcal{N}J=(\mathcal{R}|A|)^\perp\implies\mathcal{N}J=(\mathcal{R}A^*)^\perp$$
How can i check this?
(The latter is better to work with.)