A general approach for integrals of the form $\int f\left(x,\frac{\sqrt{x+m}}{\sqrt{x+n}}\right)\,dx$
Let $b-a=m$ and $b+a=n$, where $a$ and $b$ are real numbers. Then the following identities hold:
$$\frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}=\tan{\left(\frac12\sec^{-1}\left(\frac{x+b}{a}\right)\right)}=\frac{\sqrt{x+b-a}}{\sqrt{x+b+a}}=\frac{\sqrt{x+m}}{\sqrt{x+n}},\tag{1}$$
$$e^{\pm\text{i}\alpha}=\tan\left(\frac{1}{2} \csc^{-1}\left(\frac{x+b}{a}\right)\right) = \frac{x + b - \sqrt{(x + b)^2 - a^2}}{a}\tag{2}$$
These identities are generalizations of identities $(1-2)$ and $(9-10)$ at "Integration using Euler-like identities" and can be derived similarly as shown in the linked blog. The general identities $(1)$ and $(2)$ lead us to the following general transformation formula:
$$\boxed{\int f\left(x,\tan{\frac{\beta}{2}}, \tan{\frac{\gamma}{2}} \right)\,dx=\int f\left(\frac{e^{i\alpha}+e^{-i\alpha}}{2}a, e^{\pm\text{i}\alpha}, \frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}\right)\,\frac{e^{-\text{i}\alpha}-e^{\text{i}\alpha}}{2i}a\,d\alpha}\tag{3}$$
Where $\alpha=\cos^{-1}\left(\frac{x+b}{a}\right)$, $\beta=\csc^{-1}\left(\frac{x+b}{a}\right)$ and $\gamma=\sec^{-1}\left(\frac{x+b}{a}\right).$ Use the upper sign for the alternating signs $\mp$ when $\frac{x + b}{a} \geq 1$ and the lower sign when $0 \leq \frac{x + b}{a} \leq 1$.
Solution. First, we obtain the values of $a$ and $b$ by solving the following (simple!) system of equations:
$$\left. b-a=0\atop a+b=2\right\}$$
The solutions are $a = 1$ and $b = 1$. Applying formula $(3)$ for $x\geq0$, the integral becomes
$$\begin{aligned}\int \frac{\sqrt{x}}{\sqrt{x+2}}\,dx&= -\frac{i}{2}\int \frac{(1 - e^{i\alpha}) (e^{-i\alpha} - e^{i\alpha})}{(e^{i \alpha} + 1)} \, d\alpha\\&=-\frac{i}{2}\int \frac{e^{-i\alpha} (e^{i\alpha} - 1) (e^{2i\alpha} - 1)}{e^{i\alpha} + 1} \, dx\\&=-\frac{i}{2}\int e^{-i\alpha}(e^{i\alpha}-1)^2\,d\alpha\\&=-\frac{i}{2}\int (e^{-i\alpha}+e^{i\alpha}-2)\,d\alpha\\&=\frac12(2i\alpha+e^{-i\alpha}-e^{i\alpha})+C\end{aligned}$$
To switch to real numbers, replace from $(2)$, then replace the values of $a$ and $b$ and simplify, obtaining
$$=\sqrt{x^2 + 2x} + \ln\left|x+1 - \sqrt{x^2 + 2x}\right|+C$$
Now suppose you have to evaluate an integral like this one:
$$\int \frac{x\sqrt{x+1}}{\sqrt{x+2}}\,dx$$
Traditional approaches can become very complicated (as you can see in the linked calculator), whereas with my method, you only need a few lines of algebra and basic calculus like in the case of your integral.