How to solve the following optimization problem in $ X \in \mathbb{C}^{N \times M} $?
\begin{equation} \hat{X} = \arg \min_{X} \frac{1}{2} {\left\| X - Y \right\|}_{F}^{2} + \lambda {\left\| X \right\|}_{\ast} \end{equation}
Where $ {\left\| \cdot \right\|}_{F} $ denotes the Frobenius norm and $ {\left\| \cdot \right\|}_{\ast} $ denotes the nuclear norm. $ Y \in \mathbb{C}^{N \times M} $ and $ \lambda $ are known.