I was trying to Evaluate the Integral:
$$\Large{I=\int_1^{\infty} \frac{\ln x}{x^2+1} dx}$$
$$\color{#66f}{{\frac{1}{x^2+1} = \frac{1}{x^2\left(1+\frac{1}{x^2}\right)}=\frac{1}{x^2}\cdot \frac{1}{1+x^{-2}}=\frac{1}{x^2} \sum_{n=0}^{\infty} \left(\frac{1}{-x^{2}}\right)^{n}}}$$
$${I=\int_1^{\infty} \left(\frac{\ln x}{x^2}-\frac{\ln x}{x^4}+\frac{\ln x}{x^6}+\cdots\right)dx}=-\int_1^{\infty} \sum_{k=1}^{\infty} \frac{\ln x}{(-1)^kx^{2k}} dx$$
Now I would like to interchange the integral and the summation, like :
$$-\int_1^{\infty} \sum_{k=1}^{\infty} \frac{\ln x}{(-1)^kx^{2k}} dx=-\sum_{k=1}^{\infty} \int_1^{\infty} \frac{\ln x}{(-1)^kx^{2k}} dx$$
But I'm not sure if I can do that when $\infty$ is present (not real)...
$$\text{I know that:}$$
$$\bbox[8pt, border: solid 2pt crimson]{-\int_1^{b} \sum_{k=1}^{a} \frac{\ln x}{(-1)^kx^{2k}} dx=-\sum_{k=1}^{a} \int_1^{b} \frac{\ln x}{(-1)^kx^{2k}} dx}$$
$$\color{crimson}{\text{Where a, b is real}}$$
But is it the same when $a,b=\infty$?