For any triangle with sides $a$, $b$, $c$, prove the inequality $$a^2b(a-b)+b^2c(b-c)+c^2a(c-a)\ge 0 .$$
This is IMO 1983 problem 6.
I tried substituting $a=x+y$, $b=y+z$, $c=z+x$ but well it doesn't help in any sense except wasting 3 pages that lead to nothing (please don't mind the joke). Using $a=2R\sin A$, $b=2R\sin B$, $c=2R\sin C$ also didn't lead to anything for me. Could you give me a hint for finding the proper substitution?