More general, we can prove that for any normed space $(V,\|\cdot\|)$, if $x_0\in V$ and $R>0$, then $$\overline{B(x_0;R)}^{\|\cdot\|}=B[x_0;R],$$ where $\overline{B(x_0;R)}^{\|\cdot\|}$ is the closure of the open ball $B(x_0;R)$ in topology induced by $\|\cdot\|$.
The inclusion $\overline{B(x_0;R)}^{\|\cdot\|}\subseteq B[x_0;R]$ is trivial, because $B[x_0;R]$ is a closed set that contains $B(x_0;R)$ and $\overline{B(x_0;R)}^{\|\cdot\|}$ is the smallest closed set that contains $B(x_0;R)$.
To show that $B[x_0;R]\subseteq\overline{B(x_0;R)}^{\|\cdot\|}$, we can prove that any element of $B[x_0;R]$ is the limit of some sequence in $B(x_0;R)$. Let $x\in B[x_0;R]$, then of course $$\|x-x_0\|\leqslant R.$$ Now defines, for each $n\in\Bbb{N}$, $$x_n:=\left(1-\frac{1}{n}\right)x+\frac{1}{n}x_0.$$
Claim 1: The sequence $(x_n)$ converges to $x$ in the norm $\|\cdot\|$. In fact, \begin{eqnarray}
\|x_n-x\| & = & \left\|\left(1-\frac{1}{n}\right)x+\frac{1}{n}x_0-x\right\| \\
& = & \frac{1}{n}\underbrace{\|x-x_0\|}_{\leqslant R} \\
& \leqslant & \frac{R}{n}\longrightarrow0,\quad\text{when}\ n\to\infty,
\end{eqnarray} which proves that $x_n\to x$ in $\|\cdot\|$.
Claim 2: For all $n\in\Bbb{N}$, $x_n\in B(x_0;R)$, that is, $(x_n)$ is a sequence in the set $B(x_0;R)$. This is obviously by the construction of $x_n$, since \begin{eqnarray}
\|x_n-x_0\| & = & \left\|\left(1-\frac{1}{n}\right)x+\frac{1}{n}x_0-x_0\right\| \\
& = & \left\|\left(1-\frac{1}{n}\right)x-x_0\left(1-\frac{1}{n}\right)\right\| \\
& = & \left\|\left(1-\frac{1}{n}\right)(x-x_0)\right\| \\
& = & \left(1-\frac{1}{n}\right)\underbrace{\|x-x_0\|}_{\leqslant R} \\
& \leqslant & \underbrace{\left(1-\frac{1}{n}\right)}_{<1}R<R,
\end{eqnarray} which gives us $x_n\in B(x_0;R)$.
So we conclude that any element of $B[x_0;R]$ is the limit of a sequence in $B(x_0;R)$, hence $B[x_0;R]\subseteq\overline{B(x_0;R)}^{\|\cdot\|}$.