$$\log_2\binom{N}{\frac{N}{2}}\approx N\log_2N - 2(N-\frac{N}{2})\log_2(N-\frac{N}{2})=N\log_2N - 2\frac{N}{2}\log_2(\frac{N}{2})$$ $$=N\log_2N - {N}{}\log_2({N}) + {N}{}=N$$ $$\implies\binom{N}{\frac{N}{2}}\approx 2^{N}$$
Is my approximation correct?
Or the following one correct?
$$\begin{align} \log {n\choose m} & \approx (n+\tfrac{1}{2})\log n - (m+\tfrac{1}{2})\log m - (n-m+\tfrac{1}{2})\log (n-m) - \tfrac{1}{2}\log 2\pi \end{align}$$ $$\begin{align} \log {n\choose \frac{n}{2}} & \approx (n+\tfrac{1}{2})\log n - (\frac{n}{2}+\tfrac{1}{2})\log \frac{n}{2} - (n-\frac{n}{2}+\tfrac{1}{2})\log (n-\frac{n}{2}) - \tfrac{1}{2}\log 2\pi\end{align}$$ $$\begin{align}\approx(n+\tfrac{1}{2})\log n - (\frac{n}{2}+\tfrac{1}{2})\log \frac{n}{2} - (\frac{n}{2}+\tfrac{1}{2})\log (\frac{n}{2}) - \tfrac{1}{2}\log 2\pi\end{align}$$ $$\begin{align}=(n+\tfrac{1}{2})\log n - (n+1)\log \frac{n}{2}=(n+\tfrac{1}{2})\log n - (n+1)\log {n} + (n+1) - \tfrac{1}{2}\log 2\pi \end{align}$$ $$\begin{align}=-\tfrac{1}{2}\log n + (n+1) - \tfrac{1}{2}\log 2\pi \end{align}$$ $$\implies{n\choose \frac{n}{2}}\approx\frac{2^{n+1}}{\sqrt{\pi n}}$$
What is a reasonable approximation?