Case 1: Assume without loss of generality, that $x_1$ is your maximum and assume that $|x_1| > |x_i|\ \forall i=2,..,n$. Then we get $$\left(\sum_{i=1}^n|x_i|^p\right)^{\frac1p} = \sqrt[p]{|x_1|^p\cdot(1+ \frac{|x_2|^p}{|x_1|^p}+...+\frac{|x_n|^p}{|x_1|^p}) } \to \sqrt[p]{|x_1|^p} =||x||_∞ \ \mathrm{for }\ p\to\infty , $$ because $$\frac{|x_i|^p}{|x_1|^p} \to 0 \ \mathrm{for }\ p\to\infty\forall i=2,..,n,$$this follows from the convergence of the geometric series.
Case 2: Assume w.o. loss of generality that $x_1$ is your maximum and that $|x_1| \geq |x_i|\ \forall i=2,..,n$. Equality be the case $q$ times. Then:
$$\left(\sum_{i=1}^n|x_i|^p\right)^{\frac1p} = \sqrt[p]{|x_1|^p\cdot q\cdot(1+ \frac{|x_2|^p}{|x_1|^p}+...+\frac{|x_{n-q}|^p}{|x_1|^p}) } = q^{\frac{1}{p}}\sqrt[p]{|x_1|^p\cdot(1+ \frac{|x_2|^p}{|x_1|^p}+...+\frac{|x_{n-q}|^p}{|x_1|^p}) } \to \sqrt[p]{|x_1|^p} =||x||_∞ \ \mathrm{for }\ p\to\infty, $$because $q^{\frac{1}{p}}\to1 \mathrm{for }\ p\to\infty.$
This completes the proof.