Let $M$ be a commutative cancellative monoid in which gcds and lcms exist.
Lemma 0. If two elements $x,y$ of $M$ satisfy $x|t$ if and only if $y|t$, for all elements $t$, then $x$ and $y$ are associated.
Proof. For $t=x$ we see that $x|x$ implies $y|x$. By symmetry, we also get $x|y$. Hence, $x,y$ are associated. (Actually this is a special case of the Yoneda Lemma.)
Lemma 1. If $a,b,t$ are elements of $M$, then $\mathrm{gcd}(a \cdot t,b \cdot t)$ and $\mathrm{gcd}(a,b) \cdot t$ are associated.
Proof. Clearly $\mathrm{gcd}(a,b) \cdot t$ divides $a \cdot t$ and $b \cdot t$ and hence also $\mathrm{gcd}(a \cdot t,b \cdot t)$. Conversely, observe that $t$ divides $\mathrm{gcd}(a \cdot t,b \cdot t)$ since it divides $a \cdot t$ and $b \cdot t$. Write $\mathrm{gcd}(a \cdot t,b \cdot t) = c \cdot t$. Then $c$ divides $a$ and $b$, and hence $c$ divides $\mathrm{gcd}(a,b)$. So $\mathrm{gcd}(a \cdot t,b \cdot t)$ divides $\mathrm{gcd}(a,b) \cdot t$.
Proposition. If $a,b$ are elements of $M$, then $\mathrm{lcm}(a,b) \mathrm{gcd}(a,b)$ is associated to $ab$.
Proof. So let $t$ be any element of $M$. Then:
$\phantom{.--} \mathrm{lcm}(a,b)/b | t$
$\Longleftrightarrow$ $\mathrm{lcm}(a,b) | bt$
$\Longleftrightarrow$ $a | bt$ and $b | bt$
$\Longleftrightarrow$ $a | bt$
$\Longleftrightarrow$ $a | bt$ and $a|at$
$\Longleftrightarrow$ $a | \mathrm{gcd}(at,bt) \stackrel{\text{Lemma 1}}{=} \mathrm{gcd}(a,b)t$
$\Longleftrightarrow$ $a/\mathrm{gcd}(a,b) | t$
Hence, Lemma 0 implies that $\mathrm{lcm}(a,b)/b$ is associated to $a/\mathrm{gcd}(a,b)$.