Suppose that $v_1,v_2,...,v_k\in\mathbb{R}^n\setminus \{0\}.$ Show that there exists a linear functional $f:\mathbb{R}^n\rightarrow \mathbb{R}$ such that $f(v_j)\neq 0$ for all $j.$
I just taking $f(x)=\langle x,y\rangle$ for fixed $y\neq 0 $. This map is linear. But I am not sure whether it will work.