Consider a bounded region $\Omega\subset\mathbb R^n$ with a finite number of "holes" $X=\{x_1,\ldots,x_k\}$ that are isolated points in its interior. I'm pretty sure that in more than one dimension, it doesn't make sense to solve Laplace's equation with Dirichlet boundary conditions on $X$. That is, there does not exist any "valid"* $f$ such that $$\begin{align} \nabla^2f(x) &= 0 & \text{for } & x\in\operatorname{int}\Omega\setminus X, \\ f(x) &= 0 & \text{for } & x \in \partial\Omega, \\ f(x_i) &= y_i \ne 0 & \text{for } & i=1,\dots,k. \end{align}$$ I feel this is related to the fact that the Green's function for the Laplacian has a singularity at the origin, but I don't know how to get from here to there. Is there a straightforward proof, or a well-known theorem that the desired result follows from directly?†
Also, it would be useful to know if there are generalizations to higher-order differential equations like the biharmonic equation, $\nabla^4f=0$.
Update: As the comments on a now-deleted answer imply, this boils down to the fact that any not-too-singular point discontinuity in a harmonic function is removable. Wikipedia states this fact without proof or references, but mentions that Riemann's theorem proves the analogous theorem for holomorphic functions on the complex plane. What's the proof for harmonic functions on $\mathbb R^{n\ge2}$?
*I say "valid" because you could have a function that's identically zero everywhere except on $X$, but that "shouldn't count" because you could satisfy absolutely any Dirichlet boundary condition that way. Please let me know the correct PDE-theoretic term for this.
†I've had this question come up multiple times, whenever someone thinks of doing scattered data interpolation by just plugging the data points into Laplace's equation. Numerically, they end up with a spiky-looking function; mathematically, the solution doesn't even exist. In the future, I would like to be armed with a theorem when I have to explain to them why this cannot possibly work.