$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{#c00000}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}&\color{#66f}{\large%
\int_{0}^{\infty}\sech^{2}\pars{x^{2}}\,\dd x}
=\int_{x\ =\ 0}^{x\ \to\ \infty}{\dd\tanh\pars{x^{2}} \over 2x}
=\half\int_{0}^{\infty}{\tanh\pars{x^{2}} \over x^{2}}\,\dd x
\\[5mm]&=4\sum_{n\ =\ 0}^{\infty}\ \overbrace{%
\int_{0}^{\infty}{\dd x \over 4x^{4} + \bracks{\pars{2n + 1}\pi}^{2}}}
^{\ds{\color{#c00000}{1 \over 4\root{\pi}\pars{2n + 1}^{3/2}}}}\ =\
{1 \over \root{\pi}}\sum_{n\ =\ 0}^{\infty}{1 \over \pars{2n + 1}^{3/2}}
\\[5mm]&={1 \over \root{\pi}}\bracks{%
\sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}-
\sum_{n\ =\ 1}^{\infty}{1 \over \pars{2n}^{3/2}}}
={1 \over \root{\pi}}\pars{%
\sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}-
2^{-3/2}\sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}}
\\[5mm]&={1 - 2^{-3/2} \over \root{\pi}}\sum_{n\ =\ 1}^{\infty}{1 \over n^{3/2}}
=\color{#66f}{\large{1 - 2^{-3/2} \over \root{\pi}}\,\zeta\pars{3 \over 2}}
\approx {\tt 0.9528}
\end{align}
We used the well known identity:
$$
{\tanh\pars{z} \over z}
=8\sum_{n\ =\ 0}^{\infty}{1 \over 4z^{2} + \bracks{\pars{2n + 1}\pi}^{2}}
$$
and the $\ds{\color{#c00000}{\mbox{red result}}}$ was found with
one of my previous answers .