$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi}\arctan\pars{\ln\pars{\sin\pars{x}} \over x}\,\dd x
=-\pi\,\arctan\pars{2\ln\pars{2} \over \pi}}$
With $\ds{{\large\tt 0 < \mu < 1}}$:
\begin{align}
\mbox{Lets define}\quad{\cal F}\pars{\mu}&\equiv
\int_{0}^{\pi}\arctan\pars{\ln\pars{\mu\sin\pars{x}} \over x}\,\dd x\quad
\mbox{such that}
\\[3mm]{\cal F}'\pars{\mu}&=\int_{0}^{\pi}
{1 \over \bracks{\ln\pars{\mu\sin\pars{x}}/x}^{2} + 1}
\,{1 \over x}\,{1 \over \mu\sin\pars{x}}\,\sin\pars{x}\,\dd x
\\[3mm]&={1 \over \mu}\int_{0}^{\pi}{x \over \ln^{2}\pars{\mu\sin\pars{x}} + x^{2}}
\,\dd x
=-\,{1 \over \mu}\,\Im\int_{0}^{\pi}{\dd x \over \ln\pars{\mu\sin\pars{x}} + x\ic}
\end{align}
$$
\mbox{We are interested in}\quad{\cal F}\pars{1^{-}}:\ {\large ?}.
\quad\mbox{Note that}\quad{\cal F}\pars{0^{+}} = -\,{\pi^{2} \over 2}\tag{1}
$$
\begin{align}
{\cal F}'\pars{\mu}&=
-\,{1 \over \mu}\,\Im
\int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi}}
{1 \over \ln\pars{\mu\bracks{z^{2} - 1}/\bracks{2\ic z}} + \ln\pars{z}}\,{\dd z \over \ic z}
\\[3mm]&={1 \over \mu}\,\Re
\int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi}}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \over z}
\end{align}
We 'close' the contourn with the line segment $\ds{\braces{\pars{x,0}\ \mid\ x \in \pars{-1,1}}}$. The segment is indented, with arcs of radius $\ds{\epsilon}$
such that $\ds{0 < \epsilon < 1}$, around $\ds{z = -1}$, $\ds{z = 0}$ and
$\ds{z = 1}$. It turns out that the contributions from the 'indented points' at $\ds{z = \pm 1}$ vanishes out in the limit $\ds{\epsilon \to 0^{+}}$. We are left with a principal value along $\ds{\pars{-1,1}}$ and the contribution from the 'indented point' at $\ds{z = 0}$. The above mentioned principal value vanishes out $\ds{\pars{~\mbox{its integrand is odd in}\ \pars{-1,1}~}}$ such that the whole contribution to $\ds{{\cal F}'\pars{\mu}}$, in the limit
$\ds{\epsilon \to 0^{+}}$, arises 'curiously and amusing' just from the 'indented point' at $\ds{z = 0}$.
It's shown as follows:
\begin{align}
{\cal F}'\pars{\mu}&=\left.-\,{1 \over \mu}\,\Re\int_{\pi/2}^{0}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \over z}
\right\vert_{\,z\ =\ -1\ +\ \epsilon\expo{\ic\theta}}
\\[3mm]&\phantom{=}-\,{1 \over \mu}\,\Re\int_{-1 + \epsilon}^{\epsilon}
{1 \over \ln\pars{\mu\bracks{1 - x^{2}}\ic/2}}\,{\dd x \over x}
\left.-\,{1 \over \mu}\,\Re\int_{\pi}^{0}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \over z}
\right\vert_{\,z\ =\ \epsilon\expo{\ic\theta}}
\\[3mm]&\phantom{=}-\,{1 \over \mu}\,\Re\int_{\epsilon}^{1 - \epsilon}
{1 \over \ln\pars{\mu\bracks{1 - x^{2}}\ic/2}}\,{\dd x \over x}
\\[3mm]&\phantom{=}\left.-\,{1 \over \mu}\,\Re\int_{\pi}^{\pi/2}
{1 \over \ln\pars{\mu\bracks{1 - z^{2}}\ic/2}}\,{\dd z \over z}
\right\vert_{\,z\ =\ 1\ +\ \epsilon\expo{\ic\theta}}
\end{align}
\begin{align}
{\cal F}'\pars{\mu}&=
-\,{1 \over \mu}\,\Re\pp\
\overbrace{\int_{-1}^{1}
{1 \over \ln\pars{\mu\bracks{1 - x^{2}}\ic/2}}\,{\dd x \over x}}^{\ds{=\ 0}}\
-\,{1 \over \mu}\,\Re\int_{\pi}^{0}{\ic\,\dd\theta \over \ln\pars{\mu\ic/2}}
\\[3mm]&=-\,{\pi \over \mu}\,\Im\bracks{1 \over \ln\pars{\mu\ic/2}}
\end{align}
By using the boundary condition $\pars{1}$:
\begin{align}
{\cal F}\pars{1^{-}}&
=\int_{0}^{\pi}\arctan\pars{\ln\pars{\sin\pars{x}} \over x}\,\dd x
=-\,{\pi^{2} \over 2}
-\pi\,\Im\int_{0^{+}}^{1^{-}}{1 \over \mu}\,{\dd\mu \over \ln\pars{\mu\ic/2}}
\\[3mm]&=-\,{\pi^{2} \over 2}
-\pi\,\Im\int_{0^{+}}^{1^{-}}{\dd\mu/\mu \over \ln\pars{\mu/2} + \pi\ic/2}
=-\,{\pi^{2} \over 2}
-\pi\,\Im\int_{-\infty}^{-\ln\pars{2^{+}}}{\dd t \over t + \pi\ic/2}
\\[3mm]&=-\,{\pi^{2} \over 2}
+\pi\int_{-\infty}^{-\ln\pars{2^{+}}}{\pi\,\dd t/2 \over t^{2} + \pars{\pi/2}^{2}}
=-\,{\pi^{2} \over 2}
+\left.\pi\arctan\pars{2t \over \pi}\right\vert_{\,-\infty}^{\,-\ln\pars{2^{+}}}
\\[3mm]&=-\,{\pi^{2} \over 2} + \pi\bracks{%
\arctan\pars{-\,{2\ln\pars{2} \over \pi}} + {\pi \over 2}}
\end{align}
$$\color{#66f}{\large%
\int_{0}^{\pi}\arctan\pars{\ln\pars{\sin\pars{x}} \over x}\,\dd x
=-\pi\,\arctan\pars{2\ln\pars{2} \over \pi}} \approx {\tt -1.3055}
$$