So, according to the book, for all $a, b, c$ that are elements of integers, it holds that $a|b$ implies $a|bx$ for all $x$ that is an element of integers. In other words it works for all ARBITRARY $x$ in the universe $Z$.
However, please consider this question:
When $2a + 3b$ is a multiple of $17$, prove that $17$ divides $9a + 5b$.
Proof(textbook):
We observe that $17|(2a + 3b) \implies 17|(-4)(2a + 3b)$ by the theorem where $a|b$ implies $a|bx$ for all $x$ that is an element of integers. Also since $17|17$ it follows that $17|[(17a + 17b) + (-4)(2a + 3b)]$ and consequently this simplifies to $17|(9a + 5b)$.
My problem with proof:
The book chooses the $x = -4$ for the arbitrary $x$ that is part of the universe $Z$, but I find that this isn't arbitrary at all because I'm pretty sure that if I used any other number for $x$ in the universe of $Z$ it wouldn't work with the proof. It would then seem that the book specifically chose it as $-4$ because the part where they include $17|17$ seems to be specific towards $-4$ being $x$ as well. Am I right in this? How would I solve questions like these?