Alternatively, you can find the result as follows. Notice that, the joint probability can be written as the equation below, by using the chain rule for probability.
$$P\left(T_2, T_1\right) = P\left(T_2|T_1\right)P\left(T_1\right)$$
Let us first find the complementary cumulative distribution function (cdf) for the first term on the right-hand side(An identical derivation can be found on https://en.wikipedia.org/wiki/Exponential_distribution#Memorylessness.
$$
\begin{align}\label{prob2}
P\left(T>T_2|T>T_1\right) =& P\left(T> T_1 + \left(T_2 - T_1\right)|T>T_1\right)
\\ & =\frac{P\left(T> T_1 + \left(T_2 - T_1\right) \cap T>T_1\right) }{P\left(T>T_1\right)}
\\ & =\frac{P\left(T> T_1 + \left(T_2 - T_1\right)\right) }{P\left(T>T_1\right)}
\\ & =\frac{e^{-\lambda_{p}\left(T_1 + \left(T_2 - T_1\right)\right)}}{e^{-\lambda_{p}\left(T_1\right)}}
\\ & =e^{-\lambda_{p}\left(T_2 - T_1\right)}
\end{align}
$$
Thus, the cdf for $P\left(T<T_2|T>T_1\right)$ is $1- e^{-\lambda_{p}\left(T_2 - T_1\right)}$, and by taking the derivative wrt. our time variable ($T_2 - T_1$) we find the pdf, $\lambda e^{-\lambda_{p}\left(T_2 - T_1\right)}$.
Finally we insert the pdf into our initial expression.
$$P\left(T_2, T_1\right) = \lambda e^{-\lambda_{p}\left(T_2 - T_1\right)}\lambda e^{-\lambda_{p}T_1} =\lambda^2 e^{-\lambda_{p}T_2} $$