Let $b_S$ be an $F_t$ adapted process, Borel measurable in $t$ st $\int |b_s|^2ds < \infty$ (a.s). Setting $X_t=\int^t_0 b_sds$ and partitioning the interval $[0,t]$ i.e. $0=t^n_0<t^n_1... $ such that $d_n=\max_i |t^n_{i+1}-t^n_i| \rightarrow 0$ as $n \rightarrow \infty$, prove that
$\sum_i |X_{t^n_{i+1}} - X_{t^n_{i}} |^2 \rightarrow 0$ (a.s)
Heres my answer, I was wondering if you guys agreed with it:
- $|X_{t_{i+1}} - X_{t_{i}} |^2 = |\int^{t_{i+1}}_0 b_s ds - \int^{t_{i}}_0 b_s ds|^2 = |\int^{t_{i+1}}_{t_{i}} b_s ds|^2 \leq \int^{t_{i+1}}_{t_{i}} |b_s|^2 ds$
- $E|X_{t^n_{i+1}} - X_{t^n_{i}} |^2$ via Fatou is $\leq \int^{t^n_{i+1}}_{t^n_{i}} E|b_s|^2 ds = E|b_s|^2(t^n_{i+1}-t^n_i) \leq E|b_s|^2d_n$
Therefore as $n \rightarrow \infty$, $E|X_{t^n_{i+1}} - X_{t^n_{i}} |^2 \rightarrow 0$ hence by summing this over all $i$, $E\sum_i |X_{t^n_{i+1}} - X_{t^n_{i}} |^2 \rightarrow 0$ hence $\sum_i |X_{t^n_{i+1}} - X_{t^n_{i}} |^2 \rightarrow 0$ (a.s) - yes?