By definition: $$ e^x = \lim_{n \rightarrow \infty} ( 1 + \frac{x}{n} ) ^ n$$
I am interesting in calculating the error $$\left | e^x - \left( 1 + \frac{x}{n} \right) ^ n \right|$$ for some fixed $n \in \mathbb{N}$.
What I've done so far:
First note:
$$e^x = \sum_{k = 0}^\infty \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \dots \frac{x^n}{n!} + O\left(\frac{1}{(n+1)^{(n+1)}}\right)$$ and
$$\left( 1 + \frac{x}{n} \right) ^ n = \sum_{k = 0}^n {n \choose k} \frac{x^k}{n^k} = 1 + x + \frac{x^2}{2!}\left(1 - \frac{1}{n} \right) + \dots + \frac{x^n}{n!}\left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{n-1}{n} \right)$$
Subtracting term by term yields $$\frac{x^2}{2!}\left(\frac{1}{n} \right) + \frac{x^3}{3!}\left(\frac{3}{n} - \frac{2}{n^2}\right) + \frac{x^4}{3!}\left(\frac{6}{n} - \frac{11}{n^2} + \frac{6}{n^3}\right) + \dots + O\left (\frac{1}{(n+1)^{(n+1)}}\right)$$
Where can I got from here? I want to be able to calculate the exact difference, and I don't think the expression above is good enough for that task.
Any help would be highly appreciated.
