6

let $n$ be postive integer numbers,and such $n>2$,show that

$$ 8\,\,\left.\right\vert\,\,\left\lfloor% \left(\vphantom{\Large A}\sqrt[3]{n\,} + \sqrt[3]{n + 2\,}\,\right)^{3}% \right\rfloor + 1 $$ where $\left\lfloor x\right\rfloor$ is is the largest integer not greater than $x$,

My try: since

$$(a+b)^3=a^3+b^3+3ab(a+b)$$ then $$(\sqrt[3]{n}+\sqrt[3]{n+2})^3=n+n+2+3\sqrt[3]{n^2+2n}(\sqrt[3]{n}+\sqrt[3]{n+2})$$ so $$[(\sqrt[3]{n}+\sqrt[3]{n+2})^3]=2n+2+[3\sqrt[3]{n^2+2n}(\sqrt[3]{n}+\sqrt[3]{n+2})]$$

then I can't,Thank you

Bill Dubuque
  • 282,220
math110
  • 94,932
  • 17
  • 148
  • 519

1 Answers1

7

Claim For $n >2$ we have

$$\left\lfloor% \left(\vphantom{\Large A}\sqrt[3]{n\,} + \sqrt[3]{n + 2\,}\,\right)^{3}% \right\rfloor =8n+7$$

This is equivalent to

$$8n+7 \leq \left(\vphantom{\Large A}\sqrt[3]{n\,} + \sqrt[3]{n + 2\,}\,\right)^{3}< 8n+8 \Leftrightarrow \\ 8n+7 \leq 2n+2+[3\sqrt[3]{n^2+2n}(\sqrt[3]{n}+\sqrt[3]{n+2})] < 8n+8 \Leftrightarrow \\ 6n+5 \leq3\sqrt[3]{n^2+2n}(\sqrt[3]{n}+\sqrt[3]{n+2}) < 6n+6 $$

Hopefully this part is right: By Jensen

$$\sqrt[3]{n}+\sqrt[3]{n+2}< 2 \sqrt[3]{\frac{n+n+2}{2}}=2\sqrt[3]{n+1}$$ also $$3\sqrt[3]{n^2+2n}<3\sqrt[3]{n^2+2n+1}=3\sqrt[3]{(n+1)^2}\,.$$

Multiplying these two inequalities yields the upperbound.

For the lowerbound we know

$$3\sqrt[3]{n^2+2n}(\sqrt[3]{n}+\sqrt[3]{n+2}) =3\sqrt[3]{n^3+2n^2}+3\sqrt[3]{n^3+4n^2+4n}$$

Now, I think you can prove:

$$3\sqrt[3]{n^3+4n^2+4n} \geq 3n+3.5$$ and for $n > 2$ we have $$3\sqrt[3]{n^3+2n^2} > 3n+1.5$$

Much Simpler Solution

By AM-GM

$$\left( \sqrt[3]{n\,} + \sqrt[3]{n + 2\,} \right)^3 > 8 \sqrt{n^2+2n\,} >8n+7$$

with the last inequality being true for $n >3$. The case $n=3$ is trivial to check.

As Calvin pointed, by Jensen we have

$$\left(\vphantom{\Large A}\sqrt[3]{n\,} + \sqrt[3]{n + 2\,}\,\right)^{3} < \left(2\vphantom{\Large A}\sqrt[3]{n+1\,} \right)^{3} =8n+8$$

N. S.
  • 134,609
  • 1
    For the upper bound, you could have done it directly (before expanding) by Jensen's, since $ \sqrt[3]{n} + \sqrt[3]{n+2} \leq 2 \sqrt[3] {n+1} $ – Calvin Lin Nov 15 '13 at 05:34
  • P.S. I am not sure if 3.5 and 1.5 are the best choices for the last part, 3 and 2 almost work , is just that 2 is just a tad to big but 3 can be increased..... – N. S. Nov 15 '13 at 05:35
  • @CalvinLin Woow I missed the obvious, should be going to sleep. I typed at this post for 20 minutes, trying to get the right bounds :) – N. S. Nov 15 '13 at 05:36
  • @CalvinLin And I also missed that the lowerbound follows from AM-GM – N. S. Nov 15 '13 at 05:42
  • +1 Nice. Not exactly AM-GM, but it's the power-mean inequalities. – Calvin Lin Nov 15 '13 at 05:49
  • @CalvinLin AM-GM: $\sqrt[3]{n,} + \sqrt[3]{n + 2,} > 2 \sqrt{\sqrt[3]{n,} \sqrt[3]{n + 2,}}$ and cube it :) – N. S. Nov 15 '13 at 05:52
  • ahhahaha. I did it as $ (\frac{ \sqrt[3]{n} + \sqrt[3]{n+2} } { 2} )^3 \geq \sqrt{n(n+2)}$, so it was the 1/3 power vs the 0 power lol. You should rewrite your solution. – Calvin Lin Nov 15 '13 at 05:54