7

I would like to evaluate the integral $$\int_0^\infty\frac{\cos(ax)-\cos(bx)}{x}\mathrm dx$$ I think this could be done with complicated methods in singularity or other kinds of methods.

Integreek
  • 8,530

3 Answers3

7

A variation of a Frullani’s integral

\begin{align}\int_0^\infty& \frac{\cos ax-\cos bx }{x}dx =\int_0^\infty\frac1x \ d\left(\frac{\sin ax}a- \frac{\sin bx}b \right)\\& \overset{ibp}=\int_0^\infty\frac{f(ax)-f(bx)}xdx= \ln\frac ba,\>\>\>\>\>\>\> f(x)=\frac{\sin x}x \end{align}

Quanto
  • 120,125
4

Hint: Either use the formula for $\cos A\pm\cos B$, which will ultimately result in an expression

similar to that of Dirichlet's integral, or employ a trick similar to Frullani's integral, namely by

noticing that $~\dfrac{\cos ax-\cos bx}x~=~\displaystyle\int_a^b\sin(tx)~dt,~$ and then switch the order of integration

via Fubini's theorem.

Lucian
  • 49,312
0

Using Laplace transforms,

$$\begin{align}\int_0^\infty\frac{\cos ax-\cos bx}x\mathrm dx&=\int_0^\infty\mathcal L(1)(x)\cdot(\cos ax-\cos bx)\mathrm dx\\&=\int_0^\infty\mathcal L(\cos ax-\cos bx)(x)\mathrm dx\\&=\int_0^\infty\frac{x}{x^2+a^2}-\frac{x}{x^2+b^2}\mathrm dx\\&=\frac12\ln\left(\frac{x^2+a^2}{x^2+b^2}\right)\Bigg|_0^\infty\\&=\ln\left|\frac{b}a\right|\end{align}$$

Integreek
  • 8,530