Yes! The sequence $\{\sin(n)^n\}_{n\in\mathbb{N}}$ is dense on the interval $[-1,1]$. To prove this, I'll use a result proven by this paper, that for any irrational $\omega$, there's infinitely many odd integers $p,q$ for which $|p-q\omega|<1/q$. Using $\omega=\frac{\pi}{2}$, we get two infinite increasing sequences of odd integers $\{p_n\}_{n\in\mathbb{N}}$ and $\{q_n\}_{n\in\mathbb{N}}$ such that $|p_n-q_n\pi/2|<1/q_n$. With some clever analysis, this leads to $|\sin(p_n)|^{p_n} \to 1$ and thus $\limsup_n |\sin(n)|^n=1$, which I proved in this answer to a related question. To prove density, we consider the values $\sin(kp_n)^{kp_n}$ for odd $k$, which makes the approximation $kp_n \approx kq_n\frac{\pi}{2}$ worse in a very controlled way.
For convenience, let $e_n = p_n-q_n\frac{\pi}{2}$, which must be bounded by $e_n=\mathcal{O}(1/q_n)=\mathcal{O}(1/p_n)$ and thus $e_n\to 0$. Repeating the techniques of the previously linked question, we perform the following analysis for odd integers $k$ obeying $|ke_n| \approx 0$.
$$\begin{align}
|\sin(kp_n)| &= \left|\cos\left(kp_n - kq_n\frac{\pi}{2}\right)\right| \\
&= \cos(ke_n) \\
&= 1 - \frac{k^2e_n^2}{2} + \mathcal{O}(k^4e_n^4) \\
|\sin(kp_n)|^{kp_n} &= \left(1 - \frac{k^2e_n^2}{2} + \mathcal{O}(k^4e_n^4)\right)^{kp_n} \\
&= \exp\left(kp_n\cdot\left(-\frac{k^2e_n^2}{2} + \mathcal{O}(k^4e_n^4)\right)\right) \\
&= \exp\left(-\frac{k^3 e_n^2 p_n}{2} + \mathcal{O}(k^5 e_n^4 p_n)\right) \\
&\approx \exp\left(-\frac{k^3 e_n^2 p_n}{2}\right)
\end{align}$$
Now take any $\alpha\in(0,1)$, and suppose we want to show that $\alpha$ is an accumulation point of $\{|\sin(n)|^n\}_{n\in\mathbb{N}}$. In light of the above, it seems compelling to solve the equation $\alpha = \exp(-k^3 e_n^2 p_n/2)$ for $k$. However, we also want $k$ to be an odd integer, and ideally we can control the value of $k \mod 4$. This can be accomplished with some mild modifications, inspiring the following definition of the sequence $\{k_n\}_{n\in\mathbb{N}}$.
$$ k_n := 4\left\lfloor\left(\frac{-\ln(\alpha)}{32e_n^2p_n}\right)^{1/3}\right\rfloor + (q_n\mod 4)$$
Above, the value $q_n\mod 4$ is always either $1$ or $3$, since $q_n$ was odd, hence $k_n$ is also odd. We also notice that, since $e_n^2 p_n$ is bounded above by $\mathcal{O}(1/p_n)$, we get $k_n$ bounded below by $\Omega(p_n^{1/3})$ and thus $k_n\to \infty$. We can also bound $k_ne_n =\mathcal{O}((e_n/p_n)^{1/3})$ so that $k_ne_n \to 0$ as required. This leads to $\alpha$ being an accumulation point, as demonstrated below.
$$\begin{align}
k_n &\sim 4\left(\frac{-\ln(\alpha)}{32e_n^2p_n}\right)^{1/3} = \left(\frac{-2\ln(\alpha)}{e_n^2p_n}\right)^{1/3} \\
\lim_{n\to\infty} k_n^3e_n^2p_n &= -2\ln(\alpha) \\
\lim_{n\to\infty} k_n^5e_n^4p_n &= \lim_{n\to\infty} \frac{4\ln(\alpha)^2}{k_np_n} = 0 \\
\lim_{n\to\infty} |\sin(kp_n)|^{kp_n} &= \lim_{n\to\infty} \exp\left(-\frac{k^3 e_n^2 p_n}{2} + \mathcal{O}(k^5 e_n^4 p_n)\right) \\
&= \exp(\ln(\alpha) + 0) \\
&= \alpha
\end{align}$$
This shows that $\alpha$ is an accumulation point of $\{|\sin(n)|^n\}_{n\in\mathbb{N}}$. Recall, however, that we always have $k_n \equiv q_n \mod 4$ and consequently $q_nk_n \equiv 1 \mod 4$. This implies $\sin(k_np_n)>0$.
$$\begin{align}
\sin(k_np_n) &= \cos\left(k_np_n - k_nq_n\frac{\pi}{2}\right) \\
&= \cos(k_ne_n) \to 1 \\
|\sin(k_np_n)| &\sim \sin(k_np_n) \\
\lim_{n\to\infty}\sin(k_np_n)^{k_np_n} &= \alpha
\end{align}$$
This works for every $\alpha\in (0,1)$, which proves $\{\sin(n)^n\}_{n\in\mathbb{N}}$ is dense on the interval $[0,1]$. To prove density on $[-1,0]$, simply modify the definition of $k_n$ to instead subtract $q_n\mod 4$ instead of adding. This results in $k_n\equiv -q_n\mod 4$ and thus $k_nq_n\equiv -1\mod 4$. The same analysis as above shows that $|\sin(k_np_n)|^{k_np_n}\to \alpha$, but this time we have $\sin(k_np_n)<0$. Since $p_n$ is odd then likewise $\sin(k_np_n)^{k_np_n}<0$, resulting in $-\alpha$ as an accumulation point.
$$\begin{align}
\sin(k_np_n) &= -\cos\left(k_np_n - k_nq_n\frac{\pi}{2}\right) \\
&= -\cos(k_ne_n) \to -1 \\
|\sin(k_np_n)| &\sim -\sin(k_np_n) \\
\lim_{n\to\infty}\sin(k_np_n)^{k_np_n} &= -\alpha
\end{align}$$
This works for all $\alpha\in(0,1)$, which proves $\{\sin(n)^n\}_{n\in\mathbb{N}}$ is dense on $[-1,0]$ and therefore dense on all of $[-1,1]$.