Expanded comment: By rotating the region counterclockwise by $\dfrac\pi4$ rad, i.e. substituting
$$(x,y)=\left(\frac{u-v}{\sqrt2},\frac{u+v}{\sqrt2}\right)$$
then rescaling the variables by $\sqrt2$, we have
$$\begin{align*}
I &= \int_{x=0}^\tfrac\pi2 \int_{y=0}^\tfrac\pi2 \frac{\cos^5x \cos^5y}{\left(\cos^2x + \cos^2y\right)^2} \, dy\,dx \\
&= \frac1{32} \int_{u=0}^\tfrac\pi{\sqrt2} \int_{v=0}^{\tfrac\pi{\sqrt2}-u} \frac{\left(\cos\left(\sqrt2\,u\right)+\cos\left(\sqrt2\,v\right)\right)^5}{\left(1+\cos\left(\sqrt2\,u\right)\cos\left(\sqrt2\,v\right)\right)^2} \, dv\,du \\
&= \frac1{64} \int_{u=0}^\pi \int_{v=0}^{\pi-u} \frac{(\cos u+\cos v)^5}{\left(1+\cos u\cos v\right)^2} \, dv \, du
\end{align*}$$
Per Mathematica, the indefinite integral wrt $v$ is elementary; plugging in the limits, observing that the argument of the $\arctan$ component approaches $+\infty$ from below the line $v=\pi-u$, yields
$$I = \frac1{24\,576} \int_0^\pi \frac{f(u)}{\cos^5u} \, du$$
where
$$\begin{align*}
f(u)&=288\sin(2u)-66\sin(4u)+112\sin(6u)-3\sin(8u) \\
&\qquad + \pi\left[840\sin u-504\sin(3u)+168\sin(5u)-24\sin(7u)-768\sin^7u\right]\\
&\qquad +(\pi-u)\left[120\cos(6u)-120\cos(4u)+1128\cos(2u)-168\right]
\end{align*}$$
This can be further folded up and slightly simplified by substituting $u\to\dfrac\pi2-u$ on $\left[0,\dfrac\pi2\right]$, and $u\to\pi-u$ on $\left[\dfrac\pi2,\pi\right]$:
$$I = \frac1{12\,288} \int_0^\tfrac\pi2 \frac{g(u)}{\sin^5u} \, du$$
where
$$\begin{align*}
g(u) &= 3\sin(8u)+112\sin(6u)+66\sin(4u)+288\sin(2u)\\
&\qquad -u\left[120\cos(6u)+120\cos(4u)+1128\cos(2u)+168\right]
\end{align*}$$
It turns out that the integral does appear to have an exact form,
$$I = \frac{19}{24} - \frac34 G$$
where $G$ is Catalan's constant, whose presence maybe shouldn't come as a surprise considering one of its integral representations. Compare WA's output for the integral and the alleged closed form.