The original equation satisfies if $L>0$ and $x$ is a solution then for $L<0$, $-x$ is the solution. Therefore we will only consider $L>0$.
First, as
\begin{equation}
\log\left(x^{2}+\sqrt{1+x^{2}}\right)=\textrm{arcsinh}\left(x\right)
\end{equation}
the equation is equivalent to
\begin{equation}
2L=x\sqrt{1+x^{2}}+\textrm{arcsinh}\left(x\right)
\end{equation}
Transforming the equation with the change of variable $x\rightarrow\sqrt{1-1/z}$ and multiplying by z we obtain the equation
\begin{equation}
-2Lz+z\sqrt{1-\frac{1}{z}}\sqrt{2-\frac{1}{z}}+z\cdot\textrm{arcsinh}\left(\sqrt{1-\frac{1}{z}}\right)=0
\end{equation}
Noting that the solution of this equation is positive we can simplify this to expression
\begin{equation}
-2Lz+\sqrt{z-1}\sqrt{2z-1}+z\cdot\textrm{arcsinh}\left(\sqrt{1-\frac{1}{z}}\right)=0
\end{equation}
Defining the function $f(z)=-2Lz+\sqrt{z-1}\sqrt{2z-1}+z\cdot\textrm{arcsinh}\left(\sqrt{1-\frac{1}{z}}\right)$ and applying the Burniston-Siewert method to solve transcendental
equations to this equation we obtain
\begin{equation}
x=\sqrt{1-\frac{1}{z_{0}}},\quad z_{0}=\frac{\sqrt{2}}{\sqrt{2}+\textrm{arcsinh}\left(1\right)-2L}+m
\end{equation}
where
\begin{equation}
m={\displaystyle \frac{1}{2\pi}\int\limits _{0}^{1}\theta_{1}(t)+\theta_{2}(t)\,dt}
\end{equation}
with
\begin{equation}
\theta_{1}(t)=\arctan\left(\frac{\pi t}{4\sqrt{\frac{2-t}{2}}\sqrt{1-t}+2t\left(2L-\textrm{arcsinh}\left(\sqrt{\frac{2-2t}{t}}\right)\right)}\right)
\end{equation}
\begin{equation}
\theta_{2}(t)=\arctan\left(\frac{2\sqrt{t}\sqrt{\frac{1-t}{2}}+\left(t+1\right)\textrm{arcsin}\left(\sqrt{\frac{1-t}{1+t}}\right)}{2L(t+1)}\right)
\end{equation}
Putting everything into a single expression, the inverse for the arc length of a parabola (let's say $L(x)$) is
\begin{equation}
L^{-1}(x)=\left[1-\left[\frac{\sqrt{2}}{\sqrt{2}+\textrm{arcsinh}\left(1\right)-2x}+\frac{1}{2\pi}\int\limits _{0}^{1}\theta_{1}(t,x)+\theta_{2}(t,x)\,dt\right]^{-1}\right]^{1/2}
\end{equation}
with
\begin{equation}
\theta_{1}(t,x)=\arctan\left(\frac{\pi t}{4\sqrt{\frac{2-t}{2}}\sqrt{1-t}+2t\left(2x-\textrm{arcsinh}\left(\sqrt{\frac{2-2t}{t}}\right)\right)}\right)
\end{equation}
\begin{equation}
\theta_{2}(t,x)=\arctan\left(\frac{2\sqrt{t}\sqrt{\frac{1-t}{2}}+\left(t+1\right)\textrm{arcsin}\left(\sqrt{\frac{1-t}{1+t}}\right)}{2x(t+1)}\right)
\end{equation}
or, completely

an inverse graph

Again, this inverse is for $x>0$, for $x<0$ the inverse will be $-L^{-1}(x)$
Ref:
-E. E. Burniston, C.E. Siewert. The use of Riemann problems in solving a class of transcendental equations. Mathematical Proceedings of the Cambridge Philosophical Society. 73. 111 - 118. (1973).
-Henrici P., Applied and computational complex analysis, Volume III. Wiley, New York. 183-191 (1986).