This is to try to clarify / confirm the notation and definitions used in this answer. $\newcommand{\C}{\mathscr{C}}$$\newcommand{\F}{\mathscr{F}}$$\newcommand{\G}{\mathscr{G}}$$\newcommand{\D}{\mathscr{D}}$$\newcommand{\op}{\operatorname{op}}$$\newcommand{\Set}{\operatorname{Set}}$$\newcommand{\Hom}{\operatorname{Hom}}$$\newcommand{\Id}{\operatorname{Id}}$$\newcommand{\B}{\mathscr{B}}$$\newcommand{\Ob}{\operatorname{Ob}}$$\newcommand{\Mor}{\operatorname{Mor}}$
Definition: A profunctor $\mathbf{F}: \C \nrightarrow \D$ is a functor $\D^{\op} \times \C \to \Set$.
Definition: A profunctor $\mathbf{F}: \C \nrightarrow \D$ is called a representable profunctor if there exists a functor $F: \C \to \D$ such that $\mathbf{F} = \Hom_{\D} \circ ({\Id_{\D}}^{\op}, F) : \D^{\op} \times \C \to \Set$. We say that $\mathbf{F}$ represents $F$.
Definition: An endoprofunctor $\mathbf{F}$ is a profunctor whose domain and codomain category are the same, so $\mathbf{F}: \C \nrightarrow \C$, i.e. $\mathbf{F}: \C^{\op} \times \C \to \Set$ as a functor.
Fact: For any category $\C$, $\Hom_{\C}: \C \nrightarrow \C$ is a representable profunctor, representing $\Id_{\C}: C \to C$. It is of course also an endoprofunctor.
Fact: Given two functors $F_1, F_2: \C \to \D$ (i.e. two arbitrary functors with the same domain category and codomain category), the functor $\Hom_{\D} \circ (F_1^{\op}, F_2): \C^{\op} \times \C \to \Set$ is a profunctor $\C \nrightarrow \C$. (This is irrespective of the codomain category $\D$.)
Note: A lot of the following definitions can be generalized from (endo)profunctors, functors $\C^{\op} \times \C \to \Set$, to more general functors $\C^{\op} \times \C \to \D$ for an arbitrary category $\D$. But that level of generality is not needed here, so I will usually assume $\D = \Set$.
Definition: An extranatural transformation $\alpha: \mathbf{F} \nRightarrow \mathbf{G}$ from an endoprofunctor $\mathbf{F}: \B \nrightarrow \B$ to an endoprofunctor $\mathbf{G}: \C \nrightarrow \C$ consists of the following data:
- for every object $(b,c) \in \Ob(\B \times \C)$, a function $\alpha_{b,c} : \mathbf{F}(b,b) \to \mathbf{G}(c,c)$
satisfying the following two constraints:
(cowedge condition) ("extranaturality in $b$") for every morphism $b_1 \overset{f}{\rightarrow} b_2 \in \Mor(\B)$ and every $c \in \Ob(\C)$ the following square in $\Set$ commutes:
$$
\require{AMScd}
\begin{CD}
\mathbf{F}(b_2, b_1) @> \displaystyle \mathbf{F}(f^{\op}, \Id_{b_1}) >> \mathbf{F}(b_1, b_1) \\
@V \displaystyle \mathbf{F}(\Id_{b_2}^{\op}, f) VV @VV \displaystyle \alpha_{b_1, c} V \\
\mathbf{F}(b_2, b_2) @> \displaystyle \alpha_{b_2, c} >> \mathbf{G}(c,c)
\end{CD}
$$
writing $b_1 \overset{f^{\op}}{\leftarrow} b_2$ for the corresponding morphism $\in \Mor(\B^{\op})$.
(wedge condition) ("extranaturality in $c$") for every $b \in \Ob(\B)$ and every morphism $c_1 \overset{g}{\rightarrow} c_2 \in \Mor(\C)$ the following square in $\Set$ commutes:
$$
\require{AMScd}
\begin{CD}
\mathbf{F}(b, b) @> \displaystyle \alpha_{b,c_1} >> \mathbf{G}(c_1, c_1) \\
@V \displaystyle \alpha_{b, c_2} VV @VV \displaystyle \mathbf{G}(\Id_{c_1}^{\op}, g) V \\
\mathbf{G}(c_2, c_2) @> \displaystyle \mathbf{G}(g^{\op}, \Id_{c_2}) >> \mathbf{G}(c_1,c_2)
\end{CD}
$$
writing $c_1 \overset{g^{\op}}{\leftarrow} c_2$ for the corresponding morphism $\in \Mor(\C^{\op})$.
Definition: An extranatural family (called "diagonal spread" in MacLane's paper, cf. bottom of p. 54 in section 7) for an endoprofunctor $\mathbf{F}: \C \nrightarrow \C$ consists of the following data:
- for every $c \in \Ob(\C)$, an element $\alpha_c \in \mathbf{F}(c,c)$
satisfying the constraint:
- for every morphism $c_1 \overset{f}{\rightarrow} c_2 \in \Mor(\C)$, one has that ${\mathbf{F}(\Id_{c_1}^{\op}, f)(\alpha_{c_1}) = \mathbf{F}(f^{\op}, \Id_{c_2}) (\alpha_{c_2})}$.
Fact: Let $\ast$ denote the terminal category. (By abuse of notation, $\ast$ will also denote the unique object of the terminal category.) Then an extranatural family for an endoprofunctor $\mathbf{F}: \C \nrightarrow \C$ is equivalent to an extranatural transformation $\mathbf{Id}_{\ast} \nRightarrow \mathbf{F}$.
Here $\mathbf{Id}_{\ast}$ denotes the representable profunctor (as a functor $\Hom_{\ast}:\ast^{\op} \times \ast \to \Set$) that represents the identity functor $\Id_{\ast}: \ast \to \ast$. In particular, note that there is an obvious bijection between $\Ob(\ast \times \C)$ and $\Ob(\C)$, and that $\Hom_{\ast}(\ast, \ast) = \{\Id_{\ast}\}$. (This is another abuse of notation, where the identity morphism for the object $\ast$ is denoted the same as the identity functor of the category $\ast$.) A singleton set like $\{\Id_{\ast}\}$ is a terminal object in $\Set$, and morphisms from a terminal object in $\Set$ to an arbitrary set $X$ are equivalent to choosing an element of the set $X$ (due to the well-pointedness property of $\Set$). So we get two commutative diagrams:
$$
\require{AMScd}
\begin{CD}
\Hom_{\ast}(\ast, \ast) @> \displaystyle \Hom_{\ast}(\Id_{\ast}^{\op}, \Id_{\ast}) >> \Hom_{\ast}(\ast, \ast) \\
@V \displaystyle \Hom_{\ast}(\Id_{\ast}^{\op}, \Id_{\ast}) VV @VV \displaystyle \alpha_{\ast, c} V \\
\Hom_{\ast}(\ast, \ast) @> \displaystyle \alpha_{\ast, c} >> \mathbf{G}(c,c)
\end{CD}
$$
and
$$
\require{AMScd}
\begin{CD}
\Hom_{\ast}(\ast, \ast) @> \displaystyle \alpha_{\ast,c_1} >> \mathbf{F}(c_1, c_1) \\
@V \displaystyle \alpha_{\ast, c_2} VV @VV \displaystyle \mathbf{F}(\Id_{c_1}^{\op}, f) V \\
\mathbf{F}(c_2, c_2) @> \displaystyle \mathbf{F}(f^{\op}, \Id_{c_2}) >> \mathbf{F}(c_1,c_2)
\end{CD}
$$
The first commutative diagram is trivial / degenerate, and just says that the function $\alpha_{\ast, c}$ in $\Set$ (which we can identify with the element $\alpha_c$ of $\mathbf{F}(c,c)$ that it evaluates to) is equal to itself, which of course it is. The second diagram says that ${\mathbf{F}(\Id_{c_1}^{\op}, f) \circ \alpha_{\ast, c_1} = \mathbf{F}(f^{\op}, \Id_{c_2}) \circ \alpha_{\ast, c_2}}$, which of course is equivalent to the condition defining an extranatural family for $\mathbf{F}$.
Fact: Given functors $G_1, G_2: \C \to \G$, an extranatural family for the functor $\Hom_{\G} \circ (G_1^{\op}, G_2) : \C^{\op} \times \C \to \Set$ (considered as an endoprofunctor $\C \nrightarrow \C$) is the same thing as a natural transformation $G_1 \Rightarrow G_2$.
(This fact is the comment immediately following the proof of theorem 7.5 in MacLane's paper.)
Basically look at the non-trivial commutative diagram from the proof that extranatural families are a special case of extranatural transformations, setting $\mathbf{F} = \Hom_{\G} \circ (G_1^{\op}, G_2)$:
$$
\require{AMScd}
\begin{CD}
\Hom_{\ast}(\ast, \ast) @> \displaystyle \alpha_{\ast,c_1} >> \Hom_{\G}(G_1(c_1), G_2(c_1)) \\
@V \displaystyle \alpha_{\ast, c_2} VV @VV \displaystyle
\Hom_{\G}(\Id_{G_1(c_1)}^{\op}, G_2(f))
V \\
\Hom_{\G}(G_1(c_2), G_2(c_2)) @> \displaystyle
\Hom_{\G}(G_1(f)^{\op}, \Id_{G_2(c_2)})
>> \Hom_{\G}(G_1(c_1), G_2(c_2))
\end{CD}
$$
Then the result follows by using the definition of the $\Hom$ functor on morphisms. Basically the above commutative diagram says pick (via $\alpha_{\ast,c_1}$) a morphism $\alpha_{c_1} \in \Hom_{\G}(G_1(c_1), G_2(c_1))$, i.e. $G_1(c_1) \overset{\alpha_{c_1}}{\rightarrow} G_2(c_1)$, likeiwse pick a morphism $G_1(c_2) \overset{\alpha_{c_2}}{\rightarrow} G_2(c_2)$, and then because the "action" of Hom functors on the "left coordinate" for morphisms is pre-composing, and for the "right coordinate" is post-composing, we get from the above diagram that:
$$\begin{array}{rcl}
G_2(f) \circ \alpha_{c_1} &= &G_2(f) \circ \alpha_{c_1} \circ \Id_{c_1} \\
&= & \Hom_{\G}(\Id_{G_1(c_1)}^{\op}, G_2(f)) (\alpha_{c_1}) \\
&=& \Hom_{\G}(G_1(f)^{\op}, \Id_{G_2(c_2)}) (\alpha_{c_2}) \\
& = & \Id_{G_2(c_2)} \circ \alpha_{c_2} \circ G_1(f) \\
& = & \alpha_{c_2} \circ G_1(f)
\end{array}$$
and of course the equation $G_2(f) \circ \alpha_{c_1} =\alpha_{c_2} \circ G_1(f)$ is the same thing as the naturality square of a natural transformation:
$$
\require{AMScd}
\begin{CD}
G_1(c_1) @> \displaystyle G_1(f) >> G_1(c_2) \\
@V \displaystyle \alpha_{c_1} VV @VV \displaystyle
\alpha_{c_2}
V \\
G_2(c_1) @> \displaystyle
G_2(f)
>> G_2(c_2)
\end{CD}
$$
Fact: Given endoprofunctors $\mathbf{F}: \B \nrightarrow \B$, $\mathbf{G}: \C \nrightarrow \C$, and $\mathbf{H}: \C \nrightarrow \C$ (notice that the category associated to $\mathbf{G}$ and $\mathbf{H}$ must be the same, but not for $\mathbf{F}$), one can define the "composition" $\beta \circ \alpha$ of an extranatural transformation $\alpha: \mathbf{F} \nRightarrow \mathbf{G}$ with a natural transformation $\beta: \mathbf{G} \Rightarrow \mathbf{H}$ (considering $\mathbf{G}$, $\mathbf{H}$ as functors) that is an extranatural transformation $\beta \circ \alpha: \mathbf{F} \nRightarrow \mathbf{H}$.
Aside: Notice that the definition below is actually fairly "weird" to the extent that it ignores / does not use the vast majority of the structure of the natural transformation $\beta$, instead only using the "diagonal" components $\beta_{c,c}$ and not using / imposing any requirements on any other part of the structure of $\beta$. (This seems to be reflected in the notation used in Exercise 1.4 here.) Of course perhaps that should be expected to the extent that the notion of "extranatural transformation" (or at least each of the cowedge condition and wedge condition considered separately) does not use much / all of the structure of the endoprofunctor either. So quite probably these definitions apply to more general constructions, although it's questionable whether the extra generality would be useful.
Anyway, for the "cowedge condition" / "extranaturality in $b$, the proof of this is easy. We start with
$$
\require{AMScd}
\begin{CD}
\mathbf{F}(b_2, b_1) @> \displaystyle \mathbf{F}(f^{\op}, \Id_{b_1}) >> \mathbf{F}(b_1, b_1) \\
@V \displaystyle \mathbf{F}(\Id_{b_2}^{\op}, f) VV @VV \displaystyle \alpha_{b_1, c} V \\
\mathbf{F}(b_2, b_2) @> \displaystyle \alpha_{b_2, c} >> \mathbf{G}(c,c)
\end{CD}
$$
which is equivalent to the equation $\alpha_{b_2, c} \circ \mathbf{F}(\Id_{b_2}^{\op}, f) = \alpha_{b_1, c} \circ \mathbf{F}(f^{\op}, \Id_{b_1})$, which of course implies that $\beta_{c,c,} \circ \alpha_{b_2, c} \circ \mathbf{F}(\Id_{b_2}^{\op}, f) = \beta_{c,c} \circ \alpha_{b_1, c} \circ \mathbf{F}(f^{\op}, \Id_{b_1})$, leading to the cowedge condition being satisfied for $\beta \circ \alpha$:
$$
\require{AMScd}
\begin{CD}
\mathbf{F}(b_2, b_1) @> \displaystyle \mathbf{F}(f^{\op}, \Id_{b_1}) >> \mathbf{F}(b_1, b_1) \\
@V \displaystyle \mathbf{F}(\Id_{b_2}^{\op}, f) VV @VV \displaystyle \beta_{c,c} \circ \alpha_{b_1, c} V \\
\mathbf{F}(b_2, b_2) @> \displaystyle \beta_{c, c} \circ \alpha_{b_2, c} >> \mathbf{H}(c,c)
\end{CD}
$$
The wedge condition is more subtle (and the only place where we actually need the naturality of $\beta$ and non-diagonal components). Basically we want to start with the wedge condition / extranaturality in $c$ square:
$$
\require{AMScd}
\begin{CD}
\mathbf{F}(b, b) @> \displaystyle \alpha_{b,c_1} >> \mathbf{G}(c_1, c_1) \\
@V \displaystyle \alpha_{b, c_2} VV @VV \displaystyle \mathbf{G}(\Id_{c_1}^{\op}, g) V \\
\mathbf{G}(c_2, c_2) @> \displaystyle \mathbf{G}(g^{\op}, \Id_{c_2}) >> \mathbf{G}(c_1,c_2)
\end{CD}
$$
and adjoin to it the two naturality squares:
$$
\require{AMScd}
\begin{CD}
\mathbf{G}(c_2, c_2) @> \displaystyle \mathbf{G}(g^{\op}, \Id_{c_2}) >> \mathbf{G}(c_1,c_2) \\
@V \displaystyle \beta_{c_2, c_2} VV @VV \displaystyle \beta_{c_1, c_2} V \\
\mathbf{H}(c_2, c_2) @> \displaystyle \mathbf{H}(g^{\op}, \Id_{c_2}) >> \mathbf{H}(c_1,c_2)
\end{CD}
$$
and
$$
\require{AMScd}
\begin{CD}
\mathbf{G}(c_1, c_1) @> \displaystyle \mathbf{G}(\Id_{c_1}^{\op}, g) >> \mathbf{G}(c_1,c_2) \\
@V \displaystyle \beta_{c_1, c_1} VV @VV \displaystyle \beta_{c_1, c_2} V \\
\mathbf{H}(c_1, c_1) @> \displaystyle \mathbf{H}(\Id_{c_1}^{\op}, g) >> \mathbf{H}(c_1,c_2)
\end{CD}
$$
while "gluing" along the morphism $\mathbf{G}(c_1,c_2) \overset{\beta_{c_1, c_2}}{\rightarrow} \mathbf{H}(c_1,c_2)$. (Note that you need to "flip" the second commutative square across its upper-left-to-bottom-right diagonal in order to do this.) The result is a "hexagon" or, if you allow popping out into the 3rd dimension, half of a cube.
(Notice that the diagram in Remark 1.1.7 of "This is the co/end" appears to be the limit of such a diagram, so two "half-cubes" connected together to form a while cube -- which makes sense because it depicts a "universal wedge" i.e. an "end".)
If you ignore the "inner" three morphisms (that all have $\mathbf{G}(c_1, c_2)$ as either domain or codomain) you get a new extranaturality square, i.e. one satisfying the required wedge condition / extranaturality in $c$ for $\mathbf{F} \nRightarrow \mathbf{H}$:
$$
\require{AMScd}
\begin{CD}
\mathbf{F}(b, b) @> \displaystyle \beta_{c_1, c_1} \circ \alpha_{b,c_1} >> \mathbf{H}(c_1, c_1) \\
@V \displaystyle \beta_{c_2, c_2} \circ \alpha_{b, c_2} VV @VV \displaystyle \mathbf{H}(\Id_{c_1}^{\op}, g) V \\
\mathbf{H}(c_2, c_2) @> \displaystyle \mathbf{H}(g^{\op}, \Id_{c_2}) >> \mathbf{H}(c_1,c_2)
\end{CD}
$$
Hence defining $\beta \circ \alpha$ as the above, we have shown that $\beta \circ \alpha$ is an extranatural transformation (extranatural in both $b$ and $c$) $\mathbf{F} \nRightarrow \mathbf{H}$).
Corollary: The lemma that this question is about is corollary of the above facts. Specifically, given functors $G_1, G_2: \C \to \G$, a natural transformation $G_1 \Rightarrow G_2$ is the same thing as an extranatural family for $\Hom_{\G} \circ (G_1^{\op}, G_2)$, considering that functor $\C^{\op} \times \C \to \Set$ as an endoprofunctor $\mathbf{G} :\C \nrightarrow \C$, which in turn is the same thing as an extranatural transformation $\alpha: \mathbf{Id}_{\ast} \nRightarrow \mathbf{G}$. Then given functors $F_1, F_2: \C \to \F$ and a natural transformation $\beta: Hom_{\G} \circ (G_1^{\op}, G_2) \Rightarrow Hom_{\F} \circ (F_1^{\op}, F_2)$, we get an extranatural transformation $\beta \circ \alpha: \mathbf{Id}_{\ast} \nRightarrow \mathbf{F}$, where $\mathbf{F}: \C \nrightarrow \C$ is the endoprofunctor notation for the functor $\Hom_{\F} \circ (F_1^{\op}, F_2): \C^{\op} \times \C \to \Set$. The extranatural transformation $\beta \circ \alpha: \mathbf{Id}_{\ast} \nRightarrow \mathbf{F}$ is the same as an extranatural family for $\mathbf{F}$, which because $\mathbf{F} = \Hom_{\F} \circ (F_1^{\op}, F_2)$ is the same thing as a natural transformation $F_1 \Rightarrow F_2$.