How to solve the definite Integral $$\int_0^\infty \frac{1}{\sqrt{x^2+1}\ (x^2+x+1)}dx=\frac{\ln(2+\sqrt{3})}{\sqrt{3}}$$ with the hyperbolic function $x=\sinh t$?
Below is using the usual substitution $x=\tan t$ to do it. I thought it is the same because $\sinh^2t+1=\cosh^2t$ is similar with $\tan^2t+1=\sec^2t$. But, It isn't...
Substituting $$x=\tan t, dt=\sec^2{t} \ dx ,(0\leq t\leq\pi/2)$$ So, we get $$ \int_0^\infty \frac{1}{\sqrt{x^2+1}(x^2+x+1)}dx =\int_{0}^{\frac{\pi}{2}}\frac{\sec{t}}{1+\tan{t}+\tan^2{t}}dt \\=\int_{0}^{\frac{\pi}{2}}\frac{\cos{t}}{1+\sin{t}\cos{t}}dt\\=I $$ Note that $\cos{\left(\frac{\pi}{2}-t\right)}=\sin{t}$, hence substituting $t=\frac{\pi}{2}-\theta$, we have $\cos{\left(\frac{\pi}{2}-t\right)}=\sin{t}$, hence substituting $t=\frac{\pi}{2}-\theta$, we have $$ \int_{0}^{\frac{\pi}{2}}\frac{\cos{t}}{1+\sin{t}\cos{t}}dt=\int_{0}^{\frac{\pi}{2}}\frac{\sin{\theta}}{1+\sin{\theta}\cos{\theta}}d\theta=I $$ Therefore, by substitution $ \sin{t}-\cos{t}=\xi, (\sin{t}+\cos{t})dt=d\xi $ $$ 2I=\int_{0}^{\frac{\pi}{2}}\frac{\cos{t}+\sin{t}}{1+\sin{t}\cos{t}}dt\\=\int_{-1}^{1}\frac{1}{1+\frac{1-\xi^2}{2}}d\xi \\=\int_{-1}^{1}\frac{1}{3-\xi^2}d\xi \\=\frac{1}{\sqrt3}\int_{-1}^{1}\frac{1}{\sqrt3-\xi}+\frac{1}{\sqrt3+\xi}d\xi \\=\frac{1}{ \sqrt3 }\left(\ln(\sqrt3-\xi)-\ln(\sqrt3+\xi) \bigg\rvert_{-1}^{1}\right)\\=\frac{2\ln(2+\sqrt{3})}{\sqrt3} $$ Because of the result, given integral is $$I=\int_0^\infty \frac{1}{\sqrt{x^2+1}(x^2+x+1)}dx=\frac{\ln(2+\sqrt{3})}{\sqrt{3}}$$
What is actually different with this using the substitution $x=\sinh t$ instead?