$$I := \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \frac{\tan(\alpha)\tan(\beta)}{\tan(\alpha)+ \tan(\beta)} \, d\alpha \, d\beta$$
We start with the identity:
$$
\frac{\tan(\alpha)\tan(\beta)}{\tan(\alpha)+ \tan(\beta)} = -\cot(\alpha+ \beta) + \frac{1}{\tan(\alpha)+ \tan(\beta)}
$$
Therefore, define the integral:
$$I= \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \left( -\cot(\alpha + \beta) + \frac{1}{\tan(\alpha)+ \tan(\beta)} \right) d\alpha \, d\beta
$$
Step 1: Evaluate the Inner Integral
To evaluate:
$$
\int \frac{1}{\tan x + c} \, dx
$$
Let $\tan x = t$, then $dx = \frac{dt}{1 + t^2}$, and:
$$
\int \frac{1}{\tan x + c} \, dx = \int \frac{1}{(t^2 + 1)(t + c)} \, dt
$$
Use partial fractions:
$$
= \frac{c}{c^2 + 1} \int \frac{1}{1 + t^2} \, dt - \frac{1}{2(c^2 + 1)} \int \frac{2t}{1 + t^2} \, dt + \frac{1}{c^2 + 1} \int \frac{1}{t + c} \, dt
$$
$$
= \frac{c}{c^2 + 1} \arctan t - \frac{1}{2(c^2 + 1)} \ln|1 + t^2| + \frac{1}{c^2 + 1} \ln|t + c|
$$
Returning to $x$:
$$
= \frac{c}{c^2 + 1} x + \frac{1}{c^2 + 1} \ln|\tan x + c| + \frac{1}{c^2 + 1} \ln|\cos x|
$$
Step 2: Apply to the Double Integral
We now return to the integral and use $c=\tan(\beta)$:
$$
I = \int_0^{\frac{\pi}{2}} \left( \left[ -\ln|\sin(\alpha + \beta)| + \frac{\tan \beta}{\sec^2 \beta} \alpha + \frac{1}{\sec^2 \beta} \ln|\cos \alpha| + \frac{1}{\sec^2 \beta} \ln|\tan \alpha + \tan \beta| \right]_{\alpha = 0}^{\alpha = \frac{\pi}{2}} \right) d\beta
$$
This simplifies to:
$$
I = \int_0^{\frac{\pi}{2}} \left( \ln|\tan \beta| + \frac{\pi}{4} \sin(2\beta) - \cos^2 \beta \ln(\tan \beta) \right) d\beta
$$
Step 3: Use Symmetry and Known Integrals
We note:
$$
\int_0^{\frac{\pi}{2}} \ln(\tan \alpha) \, d\alpha = 0
$$
(King’s Rule: integral is odd over symmetric interval.)
Also:
$$
\int_0^{\frac{\pi}{2}} \sin(2\beta) \, d\beta = 1
$$
Therefore:
$$
I = \frac{\pi}{4} - \int_0^{\frac{\pi}{2}} \cos^2 \beta \ln(\tan \beta) \, d\beta
$$
Step 4: Simplify the Remaining Integral
Define:
$$
J := \int_0^{\frac{\pi}{2}} \cos^2 \beta \ln(\tan \beta) \, d\beta
$$
We have:
$$
\ln(\tan \beta) = \ln(\sin \beta) - \ln(\cos \beta)
$$
So:
$$
J = \int_0^{\frac{\pi}{2}} \cos^2 \beta \ln(\sin \beta) \, d\beta - \int_0^{\frac{\pi}{2}} \cos^2 \beta \ln(\cos \beta) \, d\beta
$$
Rewriting the second term (using $\cos^2(\beta)=1-\sin^(\beta)$ ):
$$
= \int_0^{\frac{\pi}{2}} \ln(\cos \beta) \, d\beta - \int_0^{\frac{\pi}{2}} \ln(\cos \beta) \sin^2 \beta \, d\beta
$$
Now by symmetry (i.e use the substitution $x=\frac \pi 2-\beta$ and since $x$ is a dummy variable change it back to $\beta$):
$$
\int_0^{\frac{\pi}{2}} \cos^2 (\beta) \ln(\sin \beta) \, d\beta = \int_0^{\frac{\pi}{2}} \sin^2 (\beta)\ln(\cos \beta) \, d\beta
$$
Therefore:
$$
J = 2 \int_0^{\frac{\pi}{2}} \cos^2 \beta \ln(\sin \beta) \, d\beta - \int_0^{\frac{\pi}{2}} \ln(\cos \beta) \, d\beta
$$
Change variable: $y = \sin \beta$, then:
$$
\int_0^{\frac{\pi}{2}} \cos^2 \beta \ln(\sin \beta) \, d\beta = \int_0^1 \ln y \sqrt{1 - y^2} \, dy
$$
So:
$$
J = 2 \int_0^1 \ln y \sqrt{1 - y^2} \, dy - \int_0^{\frac{\pi}{2}} \ln(\cos \beta) \, d\beta
$$
here I will use integration by parts and integrate $\sqrt{1-y^2} $
$$J=y \ln(y)\sqrt{1-y^2} +\arcsin(y)\ln(y)\biggr|_0^1 -\int_0^1 \sqrt{1-y^2} dy - \int_0^1 \frac{\arcsin{y}}{y} dy -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
Since $\displaystyle \lim\limits_{y \to 0}y \ln (y) =0$ ( use L'Hôpital's rule) and $\lim\limits_{y \to 0}\arcsin{y} \ln (y) =0$ ( substitute $\sin(t) = x$ and use L'Hôpital's rule )
and since $\displaystyle \int _0 ^1 \sqrt{1-y^2} dy = \frac{\pi}{4}$
$$J= -\frac{\pi}{4 } + \int_0^1 \frac{\arcsin{y}}{y} dy -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
$$-\frac{\pi}{4 } -\int _0^{\frac{\pi}{2}} \beta \cot(\beta) d\beta -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
$$=-\frac{\pi}{4 } - \beta \ln(\sin ( \beta))\biggr|_{0}^{\frac{\pi}{2}} +\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
$$= -\frac{\pi}{4 }$$
Final Result
$$\color{red}{I = \frac{\pi}{4} -J =\frac{\pi }{2}}$$