I am trying to solve the following problem:
Let $M$ be a smooth $n$-manifold, and let $\omega\in \Omega^2(M)$ be such that $\omega_p\colon T_pM\times T_pM\to \Bbb R$ is non-degenerate for each $p\in M$. Then, we have a bundle isomorphism $\omega^\flat\colon TM\to T^*M$.
My attempt: As $\omega$ is non-degenerate, the musical isomorphism $\omega^\flat_p\colon T_pM\to T^*_pM$ at every point $p\in M$ is a linear isomorphism. For a vector field $X$ on $M$, define the $1$-form $\omega^\flat(X)$ as follows $\omega^\flat(X)_p(-):= \omega_p^\flat\left(X_p\right)=\omega_p\left(X_p,-\right)$ for each $p\in M$. The smoothness of $\omega^\flat(X)$ can be checked as follows.
Write $\omega=\sum_{i,j=1}^n c_{ij} dx^i\wedge dx^j$ and $X=\sum_{\ell=1}^n X_\ell\frac{\partial}{\partial x^\ell}$ in local coordinates. Then for $Y=\sum_{k=1}^n Y^k\frac{\partial }{\partial x^k}$, we have $$ \omega^\flat(X)(Y) =\omega\left(\sum_{\ell=1}^n X_\ell\frac{\partial}{\partial x^\ell},\sum_{k=1}^n Y^k\frac{\partial }{\partial x^k}\right)=\sum_{i,j=1}^n(c_{ij}-c_{ji}) X^i Y^j.$$ Thus, $\omega^\flat(X)=\sum_{k=1}^n \sum_{i=1}^n(c_{ik}-c_{ki}) X^i dy^k$ in local coordinates. Therefore, in local coordinates $\omega^\flat\colon TM\to T^*M$ can be written as $$\left(x^1,....,x^n, X_1,...,X_n\right)\longmapsto\left(x^1,....,x^n,\sum_{i=1}^n(c_{i1}-c_{1i}) X^i,...,\sum_{i=1}^n(c_{in}-c_{ni}) X^i\right),$$ which shows $\omega^\flat$ is a smooth bundle map.
If $\omega^\sharp_p\colon T_p^*M\to T_pM$ is the inverse of $\omega^\flat_p\colon T_pM\to T^*_pM$, then for a $1$-form $\theta$ on $M$, define the vector field $\omega^\sharp(\theta)$ as follows $\omega^\sharp(\theta)_p:=\omega^\sharp_p(\theta_p)$.
Difficulty: What is the local expression of $\omega^\sharp(\theta)$ if $\theta=\sum_{\ell=1}^n \theta_\ell dx^\ell$? Is it $\omega^\sharp(\theta)=\sum_{\ell=1}^n\widetilde{c^{i\ell}}\theta_\ell\frac{\partial}{\partial x^i}$, where $\left(\widetilde{c^{i\ell}}\right)$ is the inverse of $\left(c_{ij}\right)$?
Many thanks for reading.