$$\lim_{x \to 0}\frac{x^3-x\cos (x) }{\sin (x)}$$
Factor the numerator: $x^3-x\cos(x)$ into $x(x^2-\cos(x))$
Now we have: $$\lim_{x \to 0}\frac{x(x^2-\cos (x)) }{\sin (x)}$$
We can break this fraction into two: $$\lim_{x \to 0}\frac{x}{\sin(x)} \cdot \frac{x^2-\cos (x) }{1}$$
Now we can use product rule for calculating limits of combinations which states: $$\lim_{x \to c} (f(x)\cdot g(x))= \lim_{x \to c}f(x) \cdot \lim_{x \to c} g(x) $$
So, based on product rule for calculating limits of combinations: $$ \lim_{x \to 0} \frac{x}{\sin(x)} \cdot \lim_{x \to 0} \frac{x^2 - \cos(x)}{1} $$
The limit of $\frac{x}{\sin(x)}$ as x approaches 0 is a standard limit which equals 1
Therefore, we get: $$1 \cdot \lim_{x \to 0} \frac{x^2 - \cos(x)}{1}$$
Now we can plug in 0 for x: $$1 \cdot \frac{0^2 - \cos(0)}{1}$$
This simplifies into: $$-\cos(0)$$
The cosine of 0 is 1 (refer to the unit circle) therefore: $$-\cos(0)=-1$$
So,$$\lim_{x \to 0}\frac{x^3-x\cos (x) }{\sin (x)}=-1$$