I compared the method used for the following 2 questions:
(i) $$\lim_{x\to 0}\frac{x-\sin x}{x^3}=\lim_{x\to 0}\frac{x-\left(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots\right)}{x^3}=\lim_{x\to 0}\left(\frac{1}{3!}-\frac{x^2}{5!}+\frac{x^4}{7!}-\ldots\right)=\lim_{x\to 0}\frac{1}{3!}-\lim_{x\to 0}\frac{x^2}{5!}+\lim_{x\to 0}\frac{x^4}{7!}-\ldots=\frac{1}{3!}$$
(ii)$$\lim_{n\to \infty}\frac{1+2+3+\ldots+n}{n^2}=\lim_{n\to \infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}+\ldots+\frac{n}{n^2}\right)=\lim_{n\to \infty}\frac{1}{n^2}+\lim_{n\to \infty}\frac{2}{n^2}+\lim_{n\to \infty}\frac{3}{n^2}+\ldots+\lim_{n\to \infty}\frac{n}{n^2} =0$$
The second is wrong as we know that the limit is $\frac{1}{2}$. Is the first method acceptable? What is condition for $$\lim_{n\to a}\sum_{k=1}^\infty f_k(n)=\sum_{k=1}^\infty \lim_{n\to a} f_k(n)?$$