How is proof by contradiction connected to propositional calculus?
When using proof by contradiction to prove $P,$ we assume that $\neg P$ is $\text{true}$ and show that this leads to a contradiction. How does the following truth table capture this? I see that it shows us that $(\neg P \rightarrow \bot)$ is equivalent to $P;$ I also see that the row where $\neg P$ is $\text{true}$ is the last one, and that in that row $(\neg P \rightarrow \bot)$ is $\text{false}.$
\begin{array}{|c |c|c|} P & \lnot P& (\neg P \rightarrow \bot)\\ % Use & to separate the columns \hline % Put a horizontal line between the table header and the rest. \text{T} & \text{F} & \text{T}\\ \text{F} & \text{T} & \text{F}\\ \end{array}
Alternatively, how does the following truth table capture proving $P\rightarrow Q$ using contradiction ? \begin{array}{|c c|c|c|c|} P & Q & (P \rightarrow Q)&\lnot(P\to Q)&\lnot(P\to Q)\rightarrow \bot\\ % Use & to separate the columns \hline % Put a horizontal line between the table header and the rest. \text{T} & \text{T} &\text{T}& \text{F} &\text{T}\\ \text{T} & \text{F} & \text{F}& \text{T} &\text{F}\\ \text{F} & \text{T} &\text{T}& \text{F} &\text{T}\\ \text{F} & \text{F} &\text{T}& \text{F} &\text{T}\\ \end{array}