Integration by parts shows that $$ \int \operatorname{Ci}(x) \, \mathrm dx = x \operatorname{Ci}(x) - \int \cos (x) \, \mathrm dx = x \operatorname{Ci}(x) - \sin(x) +C_{1} .$$
Then again using integration by parts, we have
$$ \begin{align} \int \operatorname{si}(x) \operatorname{Ci}(x) \, \mathrm dx &= \int \underbrace{\left(\operatorname{Si}(x)- \frac{\pi}{2} \right) }_{u} \underbrace{\operatorname{Ci}(x) \, \mathrm dx}_{dv} \\ &= \left(\operatorname{Si} (x)- \frac{\pi}{2} \right) \left( x\operatorname{Ci}(x) - \sin (x)\right) - \int \frac{\sin (x)}{x}\left(x\operatorname{Ci}(x) - \sin (x) \right) \, \mathrm dx, \end{align}$$
where $$ \begin{align} \int \underbrace{\operatorname{Ci}(x))}_{u} \underbrace{\sin(x)\, \mathrm dx}_{dv} &= - \cos(x) \operatorname{Ci}(x) + \int \frac{\cos^{2}(x)}{x} \, \mathrm dx \\ &= - \cos(x) \operatorname{Ci}(x) + \frac{1}{2} \int \left(\frac{1}{x} + \frac{\cos (2x)}{x} \right) \, \mathrm dx \\ &=- \cos(x) \operatorname{Ci}(x) + \frac{\ln (x)}{2} + \frac{\operatorname{Ci}(2x)}{2} + C_{2} \end{align}$$
and $$ \int \frac{\sin^{2}(x)}{x} \, \mathrm dx = \int \frac{1}{2} \left(\frac{1}{x}- \frac{\cos(2x)}{x} \right) \, \mathrm dx = \frac{\ln (x)}{2} -
\frac{\operatorname{Ci}(2x)}{2} + C_{3}.$$
Therefore,
$$ \small \int \operatorname{si}(x) \operatorname{Ci}(x) \, \mathrm dx = \left(\operatorname{Si} (x)- \frac{\pi}{2} \right) \left( x\operatorname{Ci}(x) - \sin (x)\right)+ \cos(x) \operatorname{Ci}(x) - \operatorname{Ci}(2x) + C_{4} \tag{1}. $$
We can can use the asymptotic form $$\operatorname{Ci}(x) \sim \frac{\sin x}{x} $$ for large $x$ to show that the limit of the right side of $(1)$ as $x \to + \infty$ is $C_{4}$, and then use use the series expansion $$\operatorname{Ci}(x) = \gamma + \ln(x) + \mathcal{O}(x^{2})$$ to show that limit of the right side of $(1)$ as $x \to 0^{+}$ is $-\ln(2) + C_{4}$.
This leads to the result.
Since $\int_{0}^{\infty} \operatorname{Ci}(x) \, \mathrm dx = 0$, it turns out that $$ \int_{0}^{\infty} \operatorname{si}(x) \operatorname{Ci}(x) \, \mathrm dx = \int_{0}^{\infty} \operatorname{Si}(x) \operatorname{Ci}(x) \, \mathrm dx. $$