Inspired by my post, I go further to investigate the general integral and find a formula for $$ I_n=\int_0^{\infty} \frac{\ln \left(x^n+1\right)}{x^n+1} dx =-\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right)\left[\gamma+\psi\left(1-\frac{1}{n}\right)\right] \tag*{} $$ Let’s start with its partner integral
$$ I(a)=\int_0^{\infty}\left(x^n+1\right)^a d x $$
and transform $I(a)$, by putting $y=\frac{1}{x^n+1}$, into a beta function $$ \begin{aligned} I(a) &=\frac{1}{n} \int_0^1 y^{-a-\frac{1}{n}-1}(1-y)^{-\frac{1}{n}-1} d y \\ &=\frac{1}{n} B\left(-a-\frac{1}{n}, \frac{1}{n}\right) \end{aligned} $$ Differentiating $I(a)$ w.r.t. $a$ yields $$ I^{\prime}(a)=\frac{1}{n} B\left(-a-\frac{1}{n}, \frac{1}{n}\right)\left(\psi(-a)-\psi\left(-a-\frac{1}{n}\right)\right) $$ Then putting $a=-1$ gives our integral$$ \begin{aligned} I_n&=I^{\prime}(-1) \\&=\frac{1}{n} B\left(1-\frac{1}{n}, \frac{1}{n}\right)\left[\psi(1)-\psi\left(1-\frac{1}{n}\right)\right] \\ &=-\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right)\left[\gamma+\psi\left(1-\frac{1}{n}\right)\right]\end{aligned} $$
For examples,
$$ \begin{aligned}& I_2=-\frac{\pi}{2} \csc \frac{\pi}{2}\left[\gamma+\psi\left(1-\frac{1}{2}\right)\right]=\pi \ln 2,\\ & I_3=-\frac{\pi}{3} \csc \left(\frac{\pi}{3}\right)\left[\gamma+\psi\left(\frac{2}{3}\right)\right]=\frac{\pi \ln 3}{\sqrt{3}}-\frac{\pi^2}{9} ,\\ &I_4=-\frac{\pi}{4} \csc \left(\frac{\pi}{4}\right)\left[\gamma+\psi\left(\frac{3}{4}\right)\right]=\frac{3 \pi}{2 \sqrt{2}}\ln 2-\frac{\pi^2}{4 \sqrt{2}},\\ & I_5=-\frac{\pi}{5} \csc \left(\frac{\pi}{5}\right)\left[\gamma+\psi\left(\frac{4}{5}\right)\right]=-\frac{2 \sqrt{2} \pi}{5 \sqrt{5-\sqrt{5}}}\left[\gamma+\psi\left(\frac{4}{5}\right)\right], \\ & I_6=-\frac{\pi}{6} \csc \left(\frac{\pi}{6}\right)\left[\gamma+\psi\left(\frac{5}{6}\right)\right]=\frac{2 \pi}{3} \ln 2+\frac{\pi}{2} \ln 3-\frac{\pi^2}{2 \sqrt{3}}, \end{aligned} $$
Furthermore, putting $a=-m$, gives $$\boxed{I(m,n)=\int_0^{\infty} \frac{\ln \left(x^n+1\right)}{(x^n+1)^m} dx = \frac{1}{n} B\left(m-\frac{1}{n}, \frac{1}{n}\right)\left[\psi(m)-\psi\left(m-\frac{1}{n}\right)\right] }$$ For example,
$$ \begin{aligned} \int_0^{\infty} \frac{\ln \left(x^6+1\right)}{(x^6+1)^5} dx & =\frac{1}{6} B\left(\frac{29}{6}, \frac{1}{6}\right)\left[\psi(5)-\psi\left(\frac{29}{6}\right)\right] \\ & =\frac{1}{6} \cdot \frac{21505 \pi}{15552} \cdot\left(-\frac{71207}{258060}-\frac{\sqrt{3} \pi}{2}+\frac{3 \ln 3}{2}+2 \ln 2\right) \\ & =\frac{21505 \pi}{93312}\left(-\frac{71207}{258060}-\frac{\sqrt{3} \pi}{2}+\frac{3 \ln 3}{2}+2 \ln 2\right) \end{aligned} $$
Are there any other methods?
Your comments and alternative methods are highly appreciated.