Show that the diagonal $\{(x,x): x\in X\}$ is closed in the metric space $(X\times X,d=\max\{d_X,d_X\})?$
My attempt:
Choose $(x,y)\in X\times X-\{(a,a): a\in X\}$
Then $c=d(x,y)/2>0.$ To show $B((x,y),c)\in X\times X-\{(a,a):a\in X\}$
If possible let $(h,h)\in B((x,y),c)$
Then $d(x,y)\le d(x,h)+d(y,h)<2c=d(x,y)!$
Am I correct?