Let $g:\mathbb R_{>0}^2\to\mathbb R_{>0}$ be any function satisfying
$$g(s,t)g(u,v)\geq g(s,v)g(t,u)$$
if $u\geq s$ and $v\geq t$. For any region $R\subset\mathbb R_{>0}^2$, define
$$\mu(R)=\int_R g(u,v)dudv.$$
Then, for any $0<x\leq y\leq z$,
$$\mu\big([x,y]^2\big)\mu\big([y,z]^2\big)\geq \mu\big([x,y]\times [y,z]\big)^2,$$
since
\begin{align*}
\mu\big([x,y]^2\big)\mu\big([y,z]^2\big)
&=\int_x^y\int_x^y\int_y^z\int_y^zg(s,t)g(u,v)\ du\ dv\ ds\ dt\\
&\geq \int_x^y\int_x^y\int_y^z\int_y^zg(s,v)g(u,t)\ du\ dv\ ds\ dt\\
&=\mu\big([x,y]\times [y,z]\big)^2,
\end{align*}
where we have used that $u\geq s$ and $v\geq t$ everywhere in the region of integration. Define $h(x,y)=\sqrt{\mu\big([x,y]^2\big)}$. Then, for $x\leq y\leq z$,
\begin{align*}
\big(h(x,y)+h(y,z)\big)^2
&=\mu\big([x,y]^2\big)+\mu\big([y,z]^2\big)+2\sqrt{\mu\big([x,y]^2\big)\mu\big([y,z]^2\big)}\\
&\geq \mu\big([x,y]^2\big)+\mu\big([y,z]^2\big)+2\mu\big([x,y]\times [y,z]\big)\\
&=\mu\big([x,z]\big)^2=h(x,z)^2.
\end{align*}
This means $h(x,y)+h(y,z)\geq h(x,z)$ for $x\leq y\leq z$. When $z\geq y\geq x$, the inequality is the same, since $h$ is symmetric, and when $y$ is not between $x$ and $z$ one of the terms on the left side exceeds the term on the right. This means that $h(x,y)+h(y,z)\geq h(x,z)$ always.
Now, define $g(u,v)=\frac1{u+v}$. We have
\begin{align*}
g(s,t)g(u,v)-g(s,v)g(t,u)
&=\frac{(s+v)(t+u)-(s+t)(u+v)}{(s+t)(u+v)(s+v)(t+u)}\\
&=\frac{(u-s)(v-t)}{(s+t)(u+v)(s+v)(t+u)}\geq 0
\end{align*}
if $u\geq s$ and $v\geq t$, and
\begin{align*}
h(x,y)
&=\sqrt{\int_x^y\int_x^y\frac1{u+v}du\ dv}\\
&=\sqrt{2x\ln(2x)+2y\ln(2y)-2(x+y)\ln(x+y)}=f(2x,2y).
\end{align*}
So, $f(x,y)+f(y,z)\geq f(x,z)$ for all $x,y,z>0$, as desired.