You can derive the identity $$\sin(3x) = 3\sin(x)\cos^2(x) - \sin^3(x)$$ by applying the angle sum rules $$\begin{align*} \cos(a + b) &= \cos(a)\cos(b) - \sin(a)\sin(b) \\ \sin(a+b) &= \sin(a)\cos(b) + \sin(b)\cos(a)\end{align*}$$
as follows:
$$\begin{align*} \sin(3x) &= \sin(2x)\cos(x) + \cos(2x)\sin(x) \\
&= \sin(x)\cos^2(x) + \sin(x)\cos^2(x) + \cos^2(x)\sin(x) - \sin^3(x) \\
&= 3\sin(x)\cos^2(x) - \sin^3(x)\end{align*}$$
The angle sum formulas are also how one can obtain $\sin(n), \cos(n)$ for all other integers once $\sin(1)$ is known, as $$\begin{align*} \cos(n+ 1) &= \cos(n)\cos(1) - \sin(n)\sin(1) \\ \sin(n+1) &= \sin(n)\cos(1) + \sin(1)\cos(n)\end{align*}.$$
(If you have some experience with complex numbers, you should figure out why the angle sum formulas are just a consequence of $$e^{i\theta} = \cos(\theta) + i\sin(\theta),$$ so all this comes from just one identity!)