Let $E',E''$ be the dual and bidual of $E$ respectively. Let $B_E,B_{E''}$ be the closed unit balls of $E, E''$ respectively. Let $J:E \to E'', x \mapsto \hat x$ the canonical injection. Fix $\varphi \in B_{E''}$ and $\varepsilon>0$. WLOG, we assume $\|\varphi\| = 1$. Let $\delta$ be the modulus of uniform convexity. We pick $f\in E'$ such that $\|f\| = 1$ and $\langle \varphi, f \rangle > 1 -\delta/2$. Then
$$
U:= \{\phi \in B_{E''} \mid \langle \phi, f \rangle > 1- \delta/2 \}
$$
is an open neighborhood (nbh) of $\varphi$ in the subspace topology $\tau$ that $\sigma(E'', E')$ induces on $B_{E''}$. By Goldstine theorem, $F \cap U \neq \emptyset$ with $F:=J[B_E]$. We're done if we can prove $\operatorname{diam} U \le \varepsilon$. By Goldstine theorem again, $B_{E''} = \overline{F}^{\tau}$, so
$$
\operatorname{diam} U =\operatorname{diam} U \cap B_{E''} = \operatorname{diam} U \cap \overline{F}^{\tau} =: r_1.
$$
It follows from $U$ is $\tau$-open that $U \cap \overline{F}^{\tau} \subseteq \overline{U \cap F}^{\tau}$. Hence $r_1 \le r_2 : = \operatorname{diam} \overline{U \cap F}^{\tau}$. Let's prove that $r_2 = r_3 := \operatorname{diam} U \cap F$. Clearly, $r_2 \ge r_3$. Fix $\phi ,\psi \in \overline{U \cap F}^{\tau}$. There are nets $(\phi_d)_{d\in D}, (\psi_d)_{d\in D'}$ in $U \cap F$ that converges to $\phi,\psi$ in $\tau$ respectively. Then there exist subnets of $(\phi_d)_{d\in D}, (\psi_d)_{d\in D'}$ that share the same directed set and that their difference is a net converging to $\phi-\psi$ in $\tau$. Because each element of the difference net belongs to the $\tau$-closed ball $r_3B_{E''}$, so does $\phi-\psi$. Hence $r_2 \le r_3 \le r_1$, which implies $\operatorname{diam} U = \operatorname{diam} U \cap F$. Let $\hat x, \hat y \in U \cap F$. Because $J$ is a linear isometry,
$$
1 -\delta < 1- \frac{\delta}{2} < \left \langle \frac{\hat x +\hat y}{2}, f \right \rangle \le \left \| \frac{\hat x +\hat y}{2} \right \| = \left |\frac{x + y}{2} \right | .
$$
By uniform convexity of $E$, we get $|x-y| < \varepsilon$. This completes the proof.