If $$\begin{align} X&=\{8^n-7n-1: n \in \Bbb{N}\} \\ Y&=\{49(n-1): n \in \Bbb{N}\} \end{align}$$ then,
a) $X\subset Y \qquad$ b) $Y\subset X\qquad$ c) $X=Y\qquad$d) none of these
I know this question can be solved by taking $X=8^n-7n-1$ and splitting $8^n$ into $(7+1)^n$ and then apply binomial theorem as follows:
Given,
$$\begin{align}X &=8^n−7n−1 \\[4pt]
&=(1+7)^n−7n−1 \\[4pt]
&=1+7n+\frac{n(n-1)}{2}+\cdots+7^n-7n-1 \\[4pt]
&=\frac{n(n-1)}{2}7^2+\cdots+7^n \\[4pt]
&=49\left[\frac{n(n-1)}{2}+\cdots+7^{n-2}\right]
\end{align}$$
Hence, the set $X$ will be some specific multiples of $49$.
$Y=49(n-1)$. Hence, the set $Y$ will be all multiples of $49$. So, it will contain the elements of $X$ too.
So, $$X\subset Y$$
But is there any alternate/simple method to solve this question without using binomial theorem?