Note: definitely worth checking the computations, and trivial things like the base of the logarithm. It's late here.
If you can show a sufficiently good bound of that sort for a Binomial random variables with parameters $n$ and $p$, then you will get what you want by applying it to $X^{(n)}\sim \mathrm{Bin}(n,\lambda/n)$ and taking the limit as $n\to \infty$:
$$
\mathbb{P}\{X^{(n)} \geq \lambda/2\} \xrightarrow[n\to\infty]{} \mathbb{P}\{Z \geq \lambda/2\}
$$
where $Z\sim \mathrm{Poisson}(\lambda)$. Now, using the computations by Thomas Ahle here, for $k := \frac{np_n}{2} = \frac{\lambda}{2}$, we get
$$
\mathbb{P}\{X^{(n)} > \lambda/2\} \leq 1- \frac{1}{\sqrt{4\lambda(1-\lambda/(2n))}}e^{-n D\left(\frac{p_n}{2} \,\big\|\, p_n\right)}
$$
where, again, $p_n := \frac{\lambda}{n}$. From the definition of the relative entropy and our $p_n$
$$
n D\left(\frac{p_n}{2} \,\big\|\, p_n\right) = \frac{1-\log 2}{2}\cdot \lambda + o(1)
$$
and so
$$
\boxed{\mathbb{P}\{Z > \lambda/2\} \leq 1- \frac{1}{2\sqrt{\lambda}}e^{-\frac{1-\log 2}{2}\cdot \lambda} }
$$
Note that $\frac{1-\log 2}{2} \approx 0.153$, so this appears to be consistent with the empirical upper bound provided by Henry.
Why this behaviour is nearly tight (up to the low-order term in the exponent).
We also have, by standard bounds on Binomial r.v.'s, that
$$
\mathbb{P}\{X^{(n)} \leq \lambda/2\} \leq e^{-n D\left(\frac{p_n}{2} \,\big\|\, p_n\right)} \xrightarrow[n\to\infty]{} e^{-\frac{1-\log 2}{2}\cdot \lambda}
$$
and so
$$
\boxed{\mathbb{P}\{Z > \lambda/2\} \geq 1-e^{-\frac{1-\log 2}{2}\cdot \lambda} }
$$