This hypergeometric function is not an elementary function, but its inverse is - see Bring radical.
\begin{align}
I&= \int_0^1\arctan{_4F_3}\left(\frac15,\frac25,\frac35,\frac45;\frac12,\frac34,\frac54;\frac{x}{64}\right)\,dx \\
&=\frac{3125}{48}\left(5+3\pi+6\ln2-3\alpha^4+4\alpha^3+6\alpha^2-12\alpha\\-12\left(\alpha^5-\alpha^4+1\right)\arctan\frac1\alpha-6\ln\left(1+\alpha^2\right)\right)\\
&=0.7857194\dots
\end{align}
where $\alpha$ is the positive root of the polynomial $625\alpha^4-500\alpha^3-100\alpha^2-20\alpha-4$. It can be expressed in radicals as follows:
$$\alpha=\frac15+\sqrt\beta+\sqrt{\frac15-\beta +\frac1{25\sqrt\beta}},$$
where
$$\beta=\frac1{30}\left(\frac\gamma5-\frac4\gamma+2\right),$$
where
$$\gamma=\sqrt[3]{15\sqrt{105}-125}.$$